Q4 potentially broken

#2
by terribleplan - opened

When attempting to load the Q4_K_M quant of the model I get the following error:

ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 3 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3090 Ti, compute capability 8.6, VMM: yes
  Device 1: NVIDIA GeForce RTX 3090 Ti, compute capability 8.6, VMM: yes
  Device 2: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
build: 4412 (dfffe676) with cc (GCC) 11.5.0 20240719 (Red Hat 11.5.0-2) for x86_64-redhat-linux
system info: n_threads = 64, n_threads_batch = 64, total_threads = 128

system_info: n_threads = 64 (n_threads_batch = 64) / 128 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | 

main: HTTP server is listening, hostname: 0.0.0.0, port: 8080, http threads: 127
main: loading model
srv    load_model: loading model '/home/ml/models/gguf/bullerwins_DeepSeek-V3-GGUF/DeepSeek-V3-Q4_K_M/DeepSeek-V3-Q4_K_M-00001-of-00010.gguf'
llama_load_model_from_file: using device CUDA0 (NVIDIA GeForce RTX 3090 Ti) - 23869 MiB free
llama_load_model_from_file: using device CUDA1 (NVIDIA GeForce RTX 3090 Ti) - 23869 MiB free
llama_load_model_from_file: using device CUDA2 (NVIDIA GeForce RTX 3090) - 23887 MiB free
llama_model_loader: additional 9 GGUFs metadata loaded.
llama_model_loader: loaded meta data with 51 key-value pairs and 1025 tensors from /home/ml/models/gguf/bullerwins_DeepSeek-V3-GGUF/DeepSeek-V3-Q4_K_M/DeepSeek-V3-Q4_K_M-00001-of-00010.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = deepseek2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Models4Tb
llama_model_loader: - kv   3:                         general.size_label str              = 256x20B
llama_model_loader: - kv   4:                   general.base_model.count u32              = 1
llama_model_loader: - kv   5:                  general.base_model.0.name str              = DeepSeek V3
llama_model_loader: - kv   6:               general.base_model.0.version str              = V3
llama_model_loader: - kv   7:          general.base_model.0.organization str              = Deepseek Ai
llama_model_loader: - kv   8:              general.base_model.0.repo_url str              = https://huggingface.co./deepseek-ai/De...
llama_model_loader: - kv   9:                      deepseek2.block_count u32              = 61
llama_model_loader: - kv  10:                   deepseek2.context_length u32              = 163840
llama_model_loader: - kv  11:                 deepseek2.embedding_length u32              = 7168
llama_model_loader: - kv  12:              deepseek2.feed_forward_length u32              = 18432
llama_model_loader: - kv  13:             deepseek2.attention.head_count u32              = 128
llama_model_loader: - kv  14:          deepseek2.attention.head_count_kv u32              = 128
llama_model_loader: - kv  15:                   deepseek2.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  16: deepseek2.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  17:                deepseek2.expert_used_count u32              = 8
llama_model_loader: - kv  18:                          general.file_type u32              = 15
llama_model_loader: - kv  19:        deepseek2.leading_dense_block_count u32              = 3
llama_model_loader: - kv  20:                       deepseek2.vocab_size u32              = 129280
llama_model_loader: - kv  21:            deepseek2.attention.q_lora_rank u32              = 1536
llama_model_loader: - kv  22:           deepseek2.attention.kv_lora_rank u32              = 512
llama_model_loader: - kv  23:             deepseek2.attention.key_length u32              = 192
llama_model_loader: - kv  24:           deepseek2.attention.value_length u32              = 128
llama_model_loader: - kv  25:       deepseek2.expert_feed_forward_length u32              = 2048
llama_model_loader: - kv  26:                     deepseek2.expert_count u32              = 256
llama_model_loader: - kv  27:              deepseek2.expert_shared_count u32              = 1
llama_model_loader: - kv  28:             deepseek2.expert_weights_scale f32              = 2.500000
llama_model_loader: - kv  29:              deepseek2.expert_weights_norm bool             = true
llama_model_loader: - kv  30:               deepseek2.expert_gating_func u32              = 2
llama_model_loader: - kv  31:             deepseek2.rope.dimension_count u32              = 64
llama_model_loader: - kv  32:                deepseek2.rope.scaling.type str              = yarn
llama_model_loader: - kv  33:              deepseek2.rope.scaling.factor f32              = 40.000000
llama_model_loader: - kv  34: deepseek2.rope.scaling.original_context_length u32              = 4096
llama_model_loader: - kv  35: deepseek2.rope.scaling.yarn_log_multiplier f32              = 0.100000
llama_model_loader: - kv  36:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  37:                         tokenizer.ggml.pre str              = deepseek-v3
llama_model_loader: - kv  38:                      tokenizer.ggml.tokens arr[str,129280]  = ["<|begin▁of▁sentence|>", "<�...
llama_model_loader: - kv  39:                  tokenizer.ggml.token_type arr[i32,129280]  = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  40:                      tokenizer.ggml.merges arr[str,127741]  = ["Ġ t", "Ġ a", "i n", "Ġ Ġ", "h e...
llama_model_loader: - kv  41:                tokenizer.ggml.bos_token_id u32              = 0
llama_model_loader: - kv  42:                tokenizer.ggml.eos_token_id u32              = 1
llama_model_loader: - kv  43:            tokenizer.ggml.padding_token_id u32              = 1
llama_model_loader: - kv  44:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  45:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  46:                    tokenizer.chat_template str              = {% if not add_generation_prompt is de...
llama_model_loader: - kv  47:               general.quantization_version u32              = 2
llama_model_loader: - kv  48:                                   split.no u16              = 0
llama_model_loader: - kv  49:                                split.count u16              = 10
llama_model_loader: - kv  50:                        split.tensors.count i32              = 1025
llama_model_loader: - type  f32:  361 tensors
llama_model_loader: - type q4_K:  606 tensors
llama_model_loader: - type q6_K:   58 tensors
llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
llm_load_vocab: special tokens cache size = 818
llm_load_vocab: token to piece cache size = 0.8223 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = deepseek2
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 129280
llm_load_print_meta: n_merges         = 127741
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 163840
llm_load_print_meta: n_embd           = 7168
llm_load_print_meta: n_layer          = 61
llm_load_print_meta: n_head           = 128
llm_load_print_meta: n_head_kv        = 128
llm_load_print_meta: n_rot            = 64
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 192
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 24576
llm_load_print_meta: n_embd_v_gqa     = 16384
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 18432
llm_load_print_meta: n_expert         = 256
llm_load_print_meta: n_expert_used    = 8
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = yarn
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 0.025
llm_load_print_meta: n_ctx_orig_yarn  = 4096
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 671B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 671.03 B
llm_load_print_meta: model size       = 376.65 GiB (4.82 BPW) 
llm_load_print_meta: general.name     = Models4Tb
llm_load_print_meta: BOS token        = 0 '<|begin▁of▁sentence|>'
llm_load_print_meta: EOS token        = 1 '<|end▁of▁sentence|>'
llm_load_print_meta: EOT token        = 1 '<|end▁of▁sentence|>'
llm_load_print_meta: PAD token        = 1 '<|end▁of▁sentence|>'
llm_load_print_meta: LF token         = 131 'Ä'
llm_load_print_meta: FIM PRE token    = 128801 '<|fim▁begin|>'
llm_load_print_meta: FIM SUF token    = 128800 '<|fim▁hole|>'
llm_load_print_meta: FIM MID token    = 128802 '<|fim▁end|>'
llm_load_print_meta: EOG token        = 1 '<|end▁of▁sentence|>'
llm_load_print_meta: max token length = 256
llm_load_print_meta: n_layer_dense_lead   = 3
llm_load_print_meta: n_lora_q             = 1536
llm_load_print_meta: n_lora_kv            = 512
llm_load_print_meta: n_ff_exp             = 2048
llm_load_print_meta: n_expert_shared      = 1
llm_load_print_meta: expert_weights_scale = 2.5
llm_load_print_meta: expert_weights_norm  = 1
llm_load_print_meta: expert_gating_func   = sigmoid
llm_load_print_meta: rope_yarn_log_mul    = 0.1000
llama_model_load: error loading model: done_getting_tensors: wrong number of tensors; expected 1025, got 967
llama_load_model_from_file: failed to load model
common_init_from_params: failed to load model '/home/ml/models/gguf/bullerwins_DeepSeek-V3-GGUF/DeepSeek-V3-Q4_K_M/DeepSeek-V3-Q4_K_M-00001-of-00010.gguf'
srv    load_model: failed to load model, '/home/ml/models/gguf/bullerwins_DeepSeek-V3-GGUF/DeepSeek-V3-Q4_K_M/DeepSeek-V3-Q4_K_M-00001-of-00010.gguf'
main: exiting due to model loading error

I am sadly a little short of RAM to run the Q8_0, so can't double check the issue isn't my build of the PR branch into lcpp by using that instead.

I'm getting the same llama_model_load: error loading model: done_getting_tensors: wrong number of tensors; expected 1025, got 967 error, for all versions - DeepSeek-V3-GGUF-bf16, DeepSeek-V3-Q4_K_M, and DeepSeek-V3-Q8_0.

EDIT: Have tried with the fairydreaming fork as well as the ggerganov master branch + PR #11049, compiled from source on both counts, CPU only.

Hi!
Yes, it needs this commit https://github.com/ggerganov/llama.cpp/pull/11049/commits/d2f784d50d3b64ce247a29f7c449bd255fe6e18a, on newer commits there has been newer changes that break the gguf's

I'm currently requanting anyways to support the newer version.

It works! Checked out fairydreaming:deepseek-v3 and reset the head to d2f7. Getting about 2 tok/sec on CPU only 2x8175M with 512GB 2400 DDR4.

Sign up or log in to comment