finetuned-ner-conll
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Precision: 0.9285
- Recall: 0.9488
- F1: 0.9386
- Accuracy: 0.9862
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.218 | 1.0 | 878 | nan | 0.9080 | 0.9367 | 0.9221 | 0.9827 |
0.0449 | 2.0 | 1756 | nan | 0.9277 | 0.9485 | 0.9380 | 0.9857 |
0.0232 | 3.0 | 2634 | nan | 0.9285 | 0.9488 | 0.9386 | 0.9862 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for blaze999/finetuned-ner-conll
Base model
google-bert/bert-base-casedDataset used to train blaze999/finetuned-ner-conll
Evaluation results
- Precision on conll2003validation set self-reported0.929
- Recall on conll2003validation set self-reported0.949
- F1 on conll2003validation set self-reported0.939
- Accuracy on conll2003validation set self-reported0.986