metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:878004
- loss:MSELoss
widget:
- source_sentence: Finally all melt into light and dissolve into me
sentences:
- '- - གཡུང་དྲུང་འཇིགས་མེད།'
- མཐར་ནི་འོད་ཞུ་རང་ལ་ཐིམ།།
- >-
དེ་ཤེས་རབ་ཀྱི་ཕ་རོལ་ཏུ་ཕྱིན་པ་ལ་སྤྱོད་པའི་ཚེ།
རྣམ་པ་ཐམས་ཅད་མཁྱེན་པ་ཉིད་དང་ལྡན་པའི་ཡིད་ལ་བྱ་བ་མེད་པར།
གཟུགས་འདུས་བྱས་སྟོང་པ་ཞེས་བྱ་བར་ཡིད་ལ་བྱེད་དེ།
དམིགས་པའི་ཚུལ་གྱིས་འདུས་བྱས་སྟོང་པ་ཉིད་ཀྱང་དམིགས་ལ།
སྟོང་པ་ཉིད་ཀྱིས་ཀྱང་རློམ་སེམས་སུ་བྱེད་དོ། །
- source_sentence: The pain I feel when betrayed is still so much larger than life.
sentences:
- >-
༢༠༡༠ ཟླ་བ་ ༡༠ ཚེས ༠༢ བོད་ཀྱི་བང་ཆེན། Comments Off on
རྟའུ་བློ་བཟང་དཔལ་ལྡན་བཀའ་ཁྲིའི་འོས་མི་ནས་ཕྱིར་འཐེན།
- ༣ ས་པར་ གས་ ས་ ད་པར་ཤ་ཚ་ད ས་པ་ལས་ཧ་ཅང་ག ས་པར་བྱེད་ ་ ང་།
- ཅེས་གསུངས་པ་འདི་ནི། ཕྱི་ལོ་ ༢༠༡༡ ཟླ་ ༥ ཚེས་ ༡༨ ཉིན་ཤེས་རིག་
- source_sentence: I am confident in my own self.
sentences:
- རྗེས་ སུ་ བདག་ བསྒྲུབ་ ཀྱིས༔
- '"ཁྱི་སྐྱག ཡར་ལོངས། "'
- ང་ཡིད་ཆེས་ཀྱི་བརྟས་སོང རང་ས་རང་གིས་སྲུང་བཞིན
- source_sentence: God it isn't easy.
sentences:
- 7:6 ནོ་ཨ་ལོ་ ༦༠༠ ལོན་སྐབས་ས་གཞིར་ཆུ་ལོག་བྱུང་ངོ་།
- ༤ དངུལ་ཆུ་འདུལ་ཚུལ།
- དཀོན་མཆོག࿒ གསུམ࿒ ག་རེ࿒ ག་རེ࿒ རེད།
- source_sentence: He could do it, so he did.
sentences:
- རེས་བྱེད་ཐུབ་པ་དེ་རེད། འོན་ཀྱང་། ཁོ་མོས་
- >-
ཕྱི་སྟོང་པ་ཉིད་ཡོངས་སུ་དག་པ། ཕྱི་སྟོང་པ་ཉིད་ཡོངས་སུ་དག་པས།
ཤེས་པ་པོ་ཡོངས་སུ་དག་པ་སྟེ། དེ་ལྟར་ན་ཤེས་པ་པོ་ཡོངས་སུ་དག་པ་དང་།
ཕྱི་སྟོང་པ་ཉིད་ཡོངས་སུ་དག་པ་འདི་ལ་གཉིས་སུ་མྱེད་དེ་གཉིས་སུ་བྱར་མྱེད་སོ་སོ་མ་ཡིན་ཐ་མྱི་དད་དོ།
།ཤེས་པ་པོ་ཡོངས་སུ་དག་པས།
- འད་ི བསྐྱར་གསོ་བདྱེ ་དགོས་འདུག ཅེས་
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- negative_mse
model-index:
- name: SentenceTransformer
results:
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: stsb dev
type: stsb-dev
metrics:
- type: negative_mse
value: -0.17373771965503693
name: Negative Mse
license: mit
datasets:
- billingsmoore/Aggregated-bo-en
language:
- bo
- en
base_model:
- sentence-transformers/all-MiniLM-L6-v2
SentenceTransformer
This is a sentence-transformers model trained on the aggregated-bo-en dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. It is intended primarily for usage with the Tibetan language.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- aggregated-bo-en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("billingsmoore/minilm-bo")
# Run inference
sentences = [
'He could do it, so he did.',
'རེས་བྱེད་ཐུབ་པ་དེ་རེད། འོན་ཀྱང་། ཁོ་མོས་',
'ཕྱི་སྟོང་པ་ཉིད་ཡོངས་སུ་དག་པ། ཕྱི་སྟོང་པ་ཉིད་ཡོངས་སུ་དག་པས། ཤེས་པ་པོ་ཡོངས་སུ་དག་པ་སྟེ། དེ་ལྟར་ན་ཤེས་པ་པོ་ཡོངས་སུ་དག་པ་དང་། ཕྱི་སྟོང་པ་ཉིད་ཡོངས་སུ་དག་པ་འདི་ལ་གཉིས་སུ་མྱེད་དེ་གཉིས་སུ་བྱར་མྱེད་སོ་སོ་མ་ཡིན་ཐ་མྱི་དད་དོ། །ཤེས་པ་པོ་ཡོངས་སུ་དག་པས།',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Knowledge Distillation
- Dataset:
stsb-dev
- Evaluated with
MSEEvaluator
Metric | Value |
---|---|
negative_mse | -0.1737 |
Training Details
Training Dataset
aggregated-bo-en
- Dataset: aggregated-bo-en
- Size: 878,004 training samples
- Columns:
tibetan
andlabel
- Approximate statistics based on the first 1000 samples:
tibetan label type string list details - min: 4 tokens
- mean: 29.06 tokens
- max: 373 tokens
- size: 384 elements
- Samples:
tibetan label ཀི་ལོ་མི་ཊར་ ༤༧.༣༩
[-0.026894396170973778, 0.07161899656057358, -0.06451261788606644, 0.004668479785323143, -0.13893075287342072, ...]
ཅ། ཁྱོད་དང་ང་།
[-0.03711550310254097, 0.04723873734474182, 0.027722617611289024, 0.03208618983626366, 0.0021679026540368795, ...]
མཚོན་རྨ་གསོ་བ། དེ་བས་མང་། >>
[0.016887372359633446, -0.004544022027403116, -0.000849854841362685, -0.046510301530361176, -0.05679721385240555, ...]
- Loss:
MSELoss
Evaluation Dataset
aggregated-bo-en
- Dataset: aggregated-bo-en
- Size: 878,004 evaluation samples
- Columns:
english
,tibetan
, andlabel
- Approximate statistics based on the first 1000 samples:
english tibetan label type string string list details - min: 3 tokens
- mean: 22.2 tokens
- max: 512 tokens
- min: 4 tokens
- mean: 32.42 tokens
- max: 487 tokens
- size: 384 elements
- Samples:
english tibetan label East TN Children's Hospital.
ཤར་གངས་ཕྲུག་གི་གསས་ཁང་།
[-0.05563941225409508, 0.09337888658046722, 0.01915512979030609, 0.02351493015885353, -0.09008331596851349, ...]
In this prayer, often called the "high priestly prayer of
སྡེ་ཚན་འདིའི་ནང་དུ་མང་། " མཁན་ཆེན་ཞི་བ་འཚོ། ཇོ་བོ་རྗེ་དཔལ་ལྡན་ཨ་ཏི་ཤ "
[0.033027056604623795, 0.013109864667057991, -0.051157161593437195, -0.07704736292362213, -0.04368748143315315, ...]
Spoilers: Oh, I don't know.
ལ་མེད། ཤེས་ཀྱི་མེད། 아니오, 모르겠습니다.
[0.008215248584747314, -0.02530045434832573, -0.029446149244904518, 0.04361790046095848, 0.05075978860259056, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochlearning_rate
: 2e-05num_train_epochs
: 25warmup_ratio
: 0.1save_safetensors
: Falseauto_find_batch_size
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 25max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Falsesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Truefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | stsb-dev_negative_mse |
---|---|---|---|---|
0 | 0 | - | - | -7.179603 |
0.0051 | 500 | 0.0546 | - | - |
0.0101 | 1000 | 0.0348 | - | - |
0.0152 | 1500 | 0.0169 | - | - |
0.0202 | 2000 | 0.0087 | - | - |
0.0253 | 2500 | 0.0055 | - | - |
0.0304 | 3000 | 0.0041 | - | - |
0.0354 | 3500 | 0.0036 | - | - |
0.0405 | 4000 | 0.0033 | - | - |
0.0456 | 4500 | 0.003 | - | - |
0.0506 | 5000 | 0.0029 | - | - |
0.0557 | 5500 | 0.0028 | - | - |
0.0607 | 6000 | 0.0027 | - | - |
0.0658 | 6500 | 0.0027 | - | - |
0.0709 | 7000 | 0.0026 | - | - |
0.0759 | 7500 | 0.0025 | - | - |
0.0810 | 8000 | 0.0025 | - | - |
0.0861 | 8500 | 0.0025 | - | - |
0.0911 | 9000 | 0.0025 | - | - |
0.0962 | 9500 | 0.0025 | - | - |
0.1012 | 10000 | 0.0024 | - | - |
0.1063 | 10500 | 0.0024 | - | - |
0.1114 | 11000 | 0.0024 | - | - |
0.1164 | 11500 | 0.0024 | - | - |
0.1215 | 12000 | 0.0024 | - | - |
0.1265 | 12500 | 0.0024 | - | - |
0.1316 | 13000 | 0.0024 | - | - |
0.1367 | 13500 | 0.0024 | - | - |
0.1417 | 14000 | 0.0024 | - | - |
0.1468 | 14500 | 0.0024 | - | - |
0.1519 | 15000 | 0.0024 | - | - |
0.1569 | 15500 | 0.0024 | - | - |
0.1620 | 16000 | 0.0024 | - | - |
0.1670 | 16500 | 0.0024 | - | - |
0.1721 | 17000 | 0.0024 | - | - |
0.1772 | 17500 | 0.0024 | - | - |
0.1822 | 18000 | 0.0024 | - | - |
0.1873 | 18500 | 0.0024 | - | - |
0.1924 | 19000 | 0.0024 | - | - |
0.1974 | 19500 | 0.0024 | - | - |
0.2025 | 20000 | 0.0024 | - | - |
0.2075 | 20500 | 0.0024 | - | - |
0.2126 | 21000 | 0.0024 | - | - |
0.2177 | 21500 | 0.0024 | - | - |
0.2227 | 22000 | 0.0024 | - | - |
0.2278 | 22500 | 0.0024 | - | - |
0.2329 | 23000 | 0.0024 | - | - |
0.2379 | 23500 | 0.0024 | - | - |
0.2430 | 24000 | 0.0023 | - | - |
0.2480 | 24500 | 0.0024 | - | - |
0.2531 | 25000 | 0.0024 | - | - |
0.2582 | 25500 | 0.0023 | - | - |
0.2632 | 26000 | 0.0024 | - | - |
0.2683 | 26500 | 0.0024 | - | - |
0.2733 | 27000 | 0.0023 | - | - |
0.2784 | 27500 | 0.0023 | - | - |
0.2835 | 28000 | 0.0023 | - | - |
0.2885 | 28500 | 0.0023 | - | - |
0.2936 | 29000 | 0.0023 | - | - |
0.2987 | 29500 | 0.0023 | - | - |
0.3037 | 30000 | 0.0023 | - | - |
0.3088 | 30500 | 0.0023 | - | - |
0.3138 | 31000 | 0.0023 | - | - |
0.3189 | 31500 | 0.0023 | - | - |
0.3240 | 32000 | 0.0023 | - | - |
0.3290 | 32500 | 0.0023 | - | - |
0.3341 | 33000 | 0.0023 | - | - |
0.3392 | 33500 | 0.0023 | - | - |
0.3442 | 34000 | 0.0023 | - | - |
0.3493 | 34500 | 0.0023 | - | - |
0.3543 | 35000 | 0.0023 | - | - |
0.3594 | 35500 | 0.0023 | - | - |
0.3645 | 36000 | 0.0023 | - | - |
0.3695 | 36500 | 0.0023 | - | - |
0.3746 | 37000 | 0.0023 | - | - |
0.3796 | 37500 | 0.0023 | - | - |
0.3847 | 38000 | 0.0023 | - | - |
0.3898 | 38500 | 0.0023 | - | - |
0.3948 | 39000 | 0.0023 | - | - |
0.3999 | 39500 | 0.0023 | - | - |
0.4050 | 40000 | 0.0023 | - | - |
0.4100 | 40500 | 0.0023 | - | - |
0.4151 | 41000 | 0.0023 | - | - |
0.4201 | 41500 | 0.0023 | - | - |
0.4252 | 42000 | 0.0023 | - | - |
0.4303 | 42500 | 0.0023 | - | - |
0.4353 | 43000 | 0.0023 | - | - |
0.4404 | 43500 | 0.0023 | - | - |
0.4455 | 44000 | 0.0022 | - | - |
0.4505 | 44500 | 0.0023 | - | - |
0.4556 | 45000 | 0.0023 | - | - |
0.4606 | 45500 | 0.0022 | - | - |
0.4657 | 46000 | 0.0022 | - | - |
0.4708 | 46500 | 0.0022 | - | - |
0.4758 | 47000 | 0.0022 | - | - |
0.4809 | 47500 | 0.0022 | - | - |
0.4859 | 48000 | 0.0022 | - | - |
0.4910 | 48500 | 0.0022 | - | - |
0.4961 | 49000 | 0.0022 | - | - |
0.5011 | 49500 | 0.0022 | - | - |
0.5062 | 50000 | 0.0022 | - | - |
0.5113 | 50500 | 0.0022 | - | - |
0.5163 | 51000 | 0.0022 | - | - |
0.5214 | 51500 | 0.0022 | - | - |
0.5264 | 52000 | 0.0022 | - | - |
0.5315 | 52500 | 0.0022 | - | - |
0.5366 | 53000 | 0.0022 | - | - |
0.5416 | 53500 | 0.0022 | - | - |
0.5467 | 54000 | 0.0022 | - | - |
0.5518 | 54500 | 0.0022 | - | - |
0.5568 | 55000 | 0.0022 | - | - |
0.5619 | 55500 | 0.0022 | - | - |
0.5669 | 56000 | 0.0022 | - | - |
0.5720 | 56500 | 0.0022 | - | - |
0.5771 | 57000 | 0.0022 | - | - |
0.5821 | 57500 | 0.0022 | - | - |
0.5872 | 58000 | 0.0022 | - | - |
0.5922 | 58500 | 0.0022 | - | - |
0.5973 | 59000 | 0.0022 | - | - |
0.6024 | 59500 | 0.0022 | - | - |
0.6074 | 60000 | 0.0022 | - | - |
0.6125 | 60500 | 0.0022 | - | - |
0.6176 | 61000 | 0.0022 | - | - |
0.6226 | 61500 | 0.0022 | - | - |
0.6277 | 62000 | 0.0022 | - | - |
0.6327 | 62500 | 0.0022 | - | - |
0.6378 | 63000 | 0.0022 | - | - |
0.6429 | 63500 | 0.0022 | - | - |
0.6479 | 64000 | 0.0022 | - | - |
0.6530 | 64500 | 0.0022 | - | - |
0.6581 | 65000 | 0.0022 | - | - |
0.6631 | 65500 | 0.0022 | - | - |
0.6682 | 66000 | 0.0022 | - | - |
0.6732 | 66500 | 0.0021 | - | - |
0.6783 | 67000 | 0.0021 | - | - |
0.6834 | 67500 | 0.0021 | - | - |
0.6884 | 68000 | 0.0021 | - | - |
0.6935 | 68500 | 0.0021 | - | - |
0.6986 | 69000 | 0.0021 | - | - |
0.7036 | 69500 | 0.0021 | - | - |
0.7087 | 70000 | 0.0021 | - | - |
0.7137 | 70500 | 0.0021 | - | - |
0.7188 | 71000 | 0.0021 | - | - |
0.7239 | 71500 | 0.0021 | - | - |
0.7289 | 72000 | 0.0021 | - | - |
0.7340 | 72500 | 0.0021 | - | - |
0.7390 | 73000 | 0.0021 | - | - |
0.7441 | 73500 | 0.0021 | - | - |
0.7492 | 74000 | 0.0021 | - | - |
0.7542 | 74500 | 0.0021 | - | - |
0.7593 | 75000 | 0.0021 | - | - |
0.7644 | 75500 | 0.0021 | - | - |
0.7694 | 76000 | 0.0021 | - | - |
0.7745 | 76500 | 0.0021 | - | - |
0.7795 | 77000 | 0.0021 | - | - |
0.7846 | 77500 | 0.0021 | - | - |
0.7897 | 78000 | 0.0021 | - | - |
0.7947 | 78500 | 0.0021 | - | - |
0.7998 | 79000 | 0.0021 | - | - |
0.8049 | 79500 | 0.0021 | - | - |
0.8099 | 80000 | 0.0021 | - | - |
0.8150 | 80500 | 0.0021 | - | - |
0.8200 | 81000 | 0.0021 | - | - |
0.8251 | 81500 | 0.0021 | - | - |
0.8302 | 82000 | 0.0021 | - | - |
0.8352 | 82500 | 0.0021 | - | - |
0.8403 | 83000 | 0.0021 | - | - |
0.8453 | 83500 | 0.0021 | - | - |
0.8504 | 84000 | 0.0021 | - | - |
0.8555 | 84500 | 0.0021 | - | - |
0.8605 | 85000 | 0.0021 | - | - |
0.8656 | 85500 | 0.0021 | - | - |
0.8707 | 86000 | 0.0021 | - | - |
0.8757 | 86500 | 0.0021 | - | - |
0.8808 | 87000 | 0.0021 | - | - |
0.8858 | 87500 | 0.0021 | - | - |
0.8909 | 88000 | 0.0021 | - | - |
0.8960 | 88500 | 0.0021 | - | - |
0.9010 | 89000 | 0.0021 | - | - |
0.9061 | 89500 | 0.0021 | - | - |
0.9112 | 90000 | 0.0021 | - | - |
0.9162 | 90500 | 0.002 | - | - |
0.9213 | 91000 | 0.0021 | - | - |
0.9263 | 91500 | 0.0021 | - | - |
0.9314 | 92000 | 0.0021 | - | - |
0.9365 | 92500 | 0.0021 | - | - |
0.9415 | 93000 | 0.002 | - | - |
0.9466 | 93500 | 0.002 | - | - |
0.9516 | 94000 | 0.0021 | - | - |
0.9567 | 94500 | 0.002 | - | - |
0.9618 | 95000 | 0.002 | - | - |
0.9668 | 95500 | 0.002 | - | - |
0.9719 | 96000 | 0.002 | - | - |
0.9770 | 96500 | 0.002 | - | - |
0.9820 | 97000 | 0.002 | - | - |
0.9871 | 97500 | 0.002 | - | - |
0.9921 | 98000 | 0.002 | - | - |
0.9972 | 98500 | 0.002 | - | - |
1.0 | 98776 | - | 0.0022 | -0.1987867 |
1.0023 | 99000 | 0.002 | - | - |
0.0051 | 500 | 0.002 | - | - |
0.0101 | 1000 | 0.002 | - | - |
0.0152 | 1500 | 0.002 | - | - |
0.0202 | 2000 | 0.002 | - | - |
0.0253 | 2500 | 0.002 | - | - |
0.0304 | 3000 | 0.002 | - | - |
0.0354 | 3500 | 0.002 | - | - |
0.0405 | 4000 | 0.002 | - | - |
0.0456 | 4500 | 0.002 | - | - |
0.0506 | 5000 | 0.002 | - | - |
0.0557 | 5500 | 0.002 | - | - |
0.0607 | 6000 | 0.002 | - | - |
0.0658 | 6500 | 0.002 | - | - |
0.0709 | 7000 | 0.002 | - | - |
0.0759 | 7500 | 0.002 | - | - |
0.0810 | 8000 | 0.002 | - | - |
0.0861 | 8500 | 0.002 | - | - |
0.0911 | 9000 | 0.002 | - | - |
0.0962 | 9500 | 0.002 | - | - |
0.1012 | 10000 | 0.002 | - | - |
0.1063 | 10500 | 0.002 | - | - |
0.1114 | 11000 | 0.002 | - | - |
0.1164 | 11500 | 0.002 | - | - |
0.1215 | 12000 | 0.002 | - | - |
0.1265 | 12500 | 0.002 | - | - |
0.1316 | 13000 | 0.002 | - | - |
0.1367 | 13500 | 0.002 | - | - |
0.1417 | 14000 | 0.002 | - | - |
0.1468 | 14500 | 0.002 | - | - |
0.1519 | 15000 | 0.002 | - | - |
0.1569 | 15500 | 0.002 | - | - |
0.1620 | 16000 | 0.002 | - | - |
0.1670 | 16500 | 0.002 | - | - |
0.1721 | 17000 | 0.002 | - | - |
0.1772 | 17500 | 0.002 | - | - |
0.1822 | 18000 | 0.002 | - | - |
0.1873 | 18500 | 0.002 | - | - |
0.1924 | 19000 | 0.002 | - | - |
0.1974 | 19500 | 0.002 | - | - |
0.2025 | 20000 | 0.002 | - | - |
0.2075 | 20500 | 0.002 | - | - |
0.2126 | 21000 | 0.002 | - | - |
0.2177 | 21500 | 0.002 | - | - |
0.2227 | 22000 | 0.002 | - | - |
0.2278 | 22500 | 0.002 | - | - |
0.2329 | 23000 | 0.002 | - | - |
0.2379 | 23500 | 0.002 | - | - |
0.2430 | 24000 | 0.002 | - | - |
0.2480 | 24500 | 0.002 | - | - |
0.2531 | 25000 | 0.002 | - | - |
0.2582 | 25500 | 0.002 | - | - |
0.2632 | 26000 | 0.002 | - | - |
0.2683 | 26500 | 0.002 | - | - |
0.2733 | 27000 | 0.002 | - | - |
0.2784 | 27500 | 0.002 | - | - |
0.2835 | 28000 | 0.002 | - | - |
0.2885 | 28500 | 0.002 | - | - |
0.2936 | 29000 | 0.002 | - | - |
0.2987 | 29500 | 0.002 | - | - |
0.3037 | 30000 | 0.002 | - | - |
0.3088 | 30500 | 0.002 | - | - |
0.3138 | 31000 | 0.002 | - | - |
0.3189 | 31500 | 0.002 | - | - |
0.3240 | 32000 | 0.002 | - | - |
0.3290 | 32500 | 0.002 | - | - |
0.3341 | 33000 | 0.002 | - | - |
0.3392 | 33500 | 0.002 | - | - |
0.3442 | 34000 | 0.002 | - | - |
0.3493 | 34500 | 0.002 | - | - |
0.3543 | 35000 | 0.002 | - | - |
0.3594 | 35500 | 0.002 | - | - |
0.3645 | 36000 | 0.002 | - | - |
0.3695 | 36500 | 0.002 | - | - |
0.3746 | 37000 | 0.002 | - | - |
0.3796 | 37500 | 0.002 | - | - |
0.3847 | 38000 | 0.002 | - | - |
0.3898 | 38500 | 0.002 | - | - |
0.3948 | 39000 | 0.002 | - | - |
0.3999 | 39500 | 0.002 | - | - |
0.4050 | 40000 | 0.002 | - | - |
0.4100 | 40500 | 0.002 | - | - |
0.4151 | 41000 | 0.002 | - | - |
0.4201 | 41500 | 0.002 | - | - |
0.4252 | 42000 | 0.002 | - | - |
0.4303 | 42500 | 0.002 | - | - |
0.4353 | 43000 | 0.002 | - | - |
0.4404 | 43500 | 0.002 | - | - |
0.4455 | 44000 | 0.002 | - | - |
0.4505 | 44500 | 0.002 | - | - |
0.4556 | 45000 | 0.002 | - | - |
0.4606 | 45500 | 0.002 | - | - |
0.4657 | 46000 | 0.002 | - | - |
0.4708 | 46500 | 0.002 | - | - |
0.4758 | 47000 | 0.002 | - | - |
0.4809 | 47500 | 0.002 | - | - |
0.4859 | 48000 | 0.002 | - | - |
0.4910 | 48500 | 0.002 | - | - |
0.4961 | 49000 | 0.002 | - | - |
0.5011 | 49500 | 0.002 | - | - |
0.5062 | 50000 | 0.002 | - | - |
0.5113 | 50500 | 0.002 | - | - |
0.5163 | 51000 | 0.002 | - | - |
0.5214 | 51500 | 0.002 | - | - |
0.5264 | 52000 | 0.002 | - | - |
0.5315 | 52500 | 0.002 | - | - |
0.5366 | 53000 | 0.002 | - | - |
0.5416 | 53500 | 0.002 | - | - |
0.5467 | 54000 | 0.002 | - | - |
0.5518 | 54500 | 0.002 | - | - |
0.5568 | 55000 | 0.002 | - | - |
0.5619 | 55500 | 0.002 | - | - |
0.5669 | 56000 | 0.002 | - | - |
0.5720 | 56500 | 0.002 | - | - |
0.5771 | 57000 | 0.002 | - | - |
0.5821 | 57500 | 0.002 | - | - |
0.5872 | 58000 | 0.002 | - | - |
0.5922 | 58500 | 0.002 | - | - |
0.5973 | 59000 | 0.002 | - | - |
0.6024 | 59500 | 0.002 | - | - |
0.6074 | 60000 | 0.002 | - | - |
0.6125 | 60500 | 0.0019 | - | - |
0.6176 | 61000 | 0.002 | - | - |
0.6226 | 61500 | 0.002 | - | - |
0.6277 | 62000 | 0.002 | - | - |
0.6327 | 62500 | 0.002 | - | - |
0.6378 | 63000 | 0.002 | - | - |
0.6429 | 63500 | 0.002 | - | - |
0.6479 | 64000 | 0.002 | - | - |
0.6530 | 64500 | 0.0019 | - | - |
0.6581 | 65000 | 0.0019 | - | - |
0.6631 | 65500 | 0.002 | - | - |
0.6682 | 66000 | 0.002 | - | - |
0.6732 | 66500 | 0.0019 | - | - |
0.6783 | 67000 | 0.0019 | - | - |
0.6834 | 67500 | 0.0019 | - | - |
0.6884 | 68000 | 0.0019 | - | - |
0.6935 | 68500 | 0.0019 | - | - |
0.6986 | 69000 | 0.002 | - | - |
0.7036 | 69500 | 0.0019 | - | - |
0.7087 | 70000 | 0.0019 | - | - |
0.7137 | 70500 | 0.0019 | - | - |
0.7188 | 71000 | 0.0019 | - | - |
0.7239 | 71500 | 0.0019 | - | - |
0.7289 | 72000 | 0.0019 | - | - |
0.7340 | 72500 | 0.0019 | - | - |
0.7390 | 73000 | 0.0019 | - | - |
0.7441 | 73500 | 0.0019 | - | - |
0.7492 | 74000 | 0.0019 | - | - |
0.7542 | 74500 | 0.0019 | - | - |
0.7593 | 75000 | 0.0019 | - | - |
0.7644 | 75500 | 0.0019 | - | - |
0.7694 | 76000 | 0.0019 | - | - |
0.7745 | 76500 | 0.0019 | - | - |
0.7795 | 77000 | 0.0019 | - | - |
0.7846 | 77500 | 0.0019 | - | - |
0.7897 | 78000 | 0.0019 | - | - |
0.7947 | 78500 | 0.0019 | - | - |
0.7998 | 79000 | 0.0019 | - | - |
0.8049 | 79500 | 0.0019 | - | - |
0.8099 | 80000 | 0.0019 | - | - |
0.8150 | 80500 | 0.0019 | - | - |
0.8200 | 81000 | 0.0019 | - | - |
0.8251 | 81500 | 0.0019 | - | - |
0.8302 | 82000 | 0.0019 | - | - |
0.8352 | 82500 | 0.0019 | - | - |
0.8403 | 83000 | 0.0019 | - | - |
0.8453 | 83500 | 0.0019 | - | - |
0.8504 | 84000 | 0.0019 | - | - |
0.8555 | 84500 | 0.0019 | - | - |
0.8605 | 85000 | 0.0019 | - | - |
0.8656 | 85500 | 0.0019 | - | - |
0.8707 | 86000 | 0.0019 | - | - |
0.8757 | 86500 | 0.0019 | - | - |
0.8808 | 87000 | 0.0019 | - | - |
0.8858 | 87500 | 0.0019 | - | - |
0.8909 | 88000 | 0.0019 | - | - |
0.8960 | 88500 | 0.0019 | - | - |
0.9010 | 89000 | 0.0019 | - | - |
0.9061 | 89500 | 0.0019 | - | - |
0.9112 | 90000 | 0.0019 | - | - |
0.9162 | 90500 | 0.0019 | - | - |
0.9213 | 91000 | 0.0019 | - | - |
0.9263 | 91500 | 0.0019 | - | - |
0.9314 | 92000 | 0.0019 | - | - |
0.9365 | 92500 | 0.0019 | - | - |
0.9415 | 93000 | 0.0019 | - | - |
0.9466 | 93500 | 0.0019 | - | - |
0.9516 | 94000 | 0.0019 | - | - |
0.9567 | 94500 | 0.0019 | - | - |
0.9618 | 95000 | 0.0019 | - | - |
0.9668 | 95500 | 0.0019 | - | - |
0.9719 | 96000 | 0.0019 | - | - |
0.9770 | 96500 | 0.0019 | - | - |
0.9820 | 97000 | 0.0019 | - | - |
0.9871 | 97500 | 0.0019 | - | - |
0.9921 | 98000 | 0.0019 | - | - |
0.9972 | 98500 | 0.0019 | - | - |
1.0 | 98776 | - | 0.0021 | -0.18616606 |
1.0023 | 99000 | 0.0019 | - | - |
0.0051 | 500 | 0.0019 | - | - |
0.0101 | 1000 | 0.0019 | - | - |
0.0152 | 1500 | 0.0019 | - | - |
0.0202 | 2000 | 0.0019 | - | - |
0.0253 | 2500 | 0.0019 | - | - |
0.0304 | 3000 | 0.0019 | - | - |
0.0354 | 3500 | 0.0019 | - | - |
0.0405 | 4000 | 0.0019 | - | - |
0.0456 | 4500 | 0.0019 | - | - |
0.0506 | 5000 | 0.0019 | - | - |
0.0557 | 5500 | 0.0019 | - | - |
0.0607 | 6000 | 0.0019 | - | - |
0.0658 | 6500 | 0.0019 | - | - |
0.0709 | 7000 | 0.0019 | - | - |
0.0759 | 7500 | 0.0019 | - | - |
0.0810 | 8000 | 0.0019 | - | - |
0.0861 | 8500 | 0.0019 | - | - |
0.0911 | 9000 | 0.0019 | - | - |
0.0962 | 9500 | 0.0019 | - | - |
0.1012 | 10000 | 0.0019 | - | - |
0.1063 | 10500 | 0.0019 | - | - |
0.1114 | 11000 | 0.0019 | - | - |
0.1164 | 11500 | 0.0019 | - | - |
0.1215 | 12000 | 0.0019 | - | - |
0.1265 | 12500 | 0.0019 | - | - |
0.1316 | 13000 | 0.0019 | - | - |
0.1367 | 13500 | 0.0019 | - | - |
0.1417 | 14000 | 0.0019 | - | - |
0.1468 | 14500 | 0.0019 | - | - |
0.1519 | 15000 | 0.0019 | - | - |
0.1569 | 15500 | 0.0019 | - | - |
0.1620 | 16000 | 0.0019 | - | - |
0.1670 | 16500 | 0.0019 | - | - |
0.1721 | 17000 | 0.0019 | - | - |
0.1772 | 17500 | 0.0019 | - | - |
0.1822 | 18000 | 0.0019 | - | - |
0.1873 | 18500 | 0.0019 | - | - |
0.1924 | 19000 | 0.0019 | - | - |
0.1974 | 19500 | 0.0019 | - | - |
0.2025 | 20000 | 0.0019 | - | - |
0.2075 | 20500 | 0.0019 | - | - |
0.2126 | 21000 | 0.0019 | - | - |
0.2177 | 21500 | 0.0019 | - | - |
0.2227 | 22000 | 0.0019 | - | - |
0.2278 | 22500 | 0.0019 | - | - |
0.2329 | 23000 | 0.0019 | - | - |
0.2379 | 23500 | 0.0019 | - | - |
0.2430 | 24000 | 0.0019 | - | - |
0.2480 | 24500 | 0.0019 | - | - |
0.2531 | 25000 | 0.0019 | - | - |
0.2582 | 25500 | 0.0019 | - | - |
0.2632 | 26000 | 0.0019 | - | - |
0.2683 | 26500 | 0.0019 | - | - |
0.2733 | 27000 | 0.0019 | - | - |
0.2784 | 27500 | 0.0019 | - | - |
0.2835 | 28000 | 0.0019 | - | - |
0.2885 | 28500 | 0.0019 | - | - |
0.2936 | 29000 | 0.0019 | - | - |
0.2987 | 29500 | 0.0019 | - | - |
0.3037 | 30000 | 0.0019 | - | - |
0.3088 | 30500 | 0.0019 | - | - |
0.3138 | 31000 | 0.0019 | - | - |
0.3189 | 31500 | 0.0019 | - | - |
0.3240 | 32000 | 0.0019 | - | - |
0.3290 | 32500 | 0.0019 | - | - |
0.3341 | 33000 | 0.0019 | - | - |
0.3392 | 33500 | 0.0019 | - | - |
0.3442 | 34000 | 0.0019 | - | - |
0.3493 | 34500 | 0.0019 | - | - |
0.3543 | 35000 | 0.0019 | - | - |
0.3594 | 35500 | 0.0019 | - | - |
0.3645 | 36000 | 0.0019 | - | - |
0.3695 | 36500 | 0.0019 | - | - |
0.3746 | 37000 | 0.0019 | - | - |
0.3796 | 37500 | 0.0019 | - | - |
0.3847 | 38000 | 0.0019 | - | - |
0.3898 | 38500 | 0.0019 | - | - |
0.3948 | 39000 | 0.0019 | - | - |
0.3999 | 39500 | 0.0019 | - | - |
0.4050 | 40000 | 0.0019 | - | - |
0.4100 | 40500 | 0.0019 | - | - |
0.4151 | 41000 | 0.0019 | - | - |
0.4201 | 41500 | 0.0019 | - | - |
0.4252 | 42000 | 0.0019 | - | - |
0.4303 | 42500 | 0.0019 | - | - |
0.4353 | 43000 | 0.0019 | - | - |
0.4404 | 43500 | 0.0019 | - | - |
0.4455 | 44000 | 0.0019 | - | - |
0.4505 | 44500 | 0.0019 | - | - |
0.4556 | 45000 | 0.0019 | - | - |
0.4606 | 45500 | 0.0019 | - | - |
0.4657 | 46000 | 0.0019 | - | - |
0.4708 | 46500 | 0.0019 | - | - |
0.4758 | 47000 | 0.0019 | - | - |
0.4809 | 47500 | 0.0019 | - | - |
0.4859 | 48000 | 0.0019 | - | - |
0.4910 | 48500 | 0.0019 | - | - |
0.4961 | 49000 | 0.0019 | - | - |
0.5011 | 49500 | 0.0019 | - | - |
0.5062 | 50000 | 0.0019 | - | - |
0.5113 | 50500 | 0.0019 | - | - |
0.5163 | 51000 | 0.0019 | - | - |
0.5214 | 51500 | 0.0018 | - | - |
0.5264 | 52000 | 0.0019 | - | - |
0.5315 | 52500 | 0.0019 | - | - |
0.5366 | 53000 | 0.0019 | - | - |
0.5416 | 53500 | 0.0019 | - | - |
0.5467 | 54000 | 0.0019 | - | - |
0.5518 | 54500 | 0.0019 | - | - |
0.5568 | 55000 | 0.0019 | - | - |
0.5619 | 55500 | 0.0018 | - | - |
0.5669 | 56000 | 0.0019 | - | - |
0.5720 | 56500 | 0.0019 | - | - |
0.5771 | 57000 | 0.0018 | - | - |
0.5821 | 57500 | 0.0018 | - | - |
0.5872 | 58000 | 0.0019 | - | - |
0.5922 | 58500 | 0.0019 | - | - |
0.5973 | 59000 | 0.0019 | - | - |
0.6024 | 59500 | 0.0019 | - | - |
0.6074 | 60000 | 0.0018 | - | - |
0.6125 | 60500 | 0.0018 | - | - |
0.6176 | 61000 | 0.0019 | - | - |
0.6226 | 61500 | 0.0018 | - | - |
0.6277 | 62000 | 0.0019 | - | - |
0.6327 | 62500 | 0.0019 | - | - |
0.6378 | 63000 | 0.0019 | - | - |
0.6429 | 63500 | 0.0019 | - | - |
0.6479 | 64000 | 0.0018 | - | - |
0.6530 | 64500 | 0.0018 | - | - |
0.6581 | 65000 | 0.0018 | - | - |
0.6631 | 65500 | 0.0019 | - | - |
0.6682 | 66000 | 0.0019 | - | - |
0.6732 | 66500 | 0.0018 | - | - |
0.6783 | 67000 | 0.0018 | - | - |
0.6834 | 67500 | 0.0018 | - | - |
0.6884 | 68000 | 0.0019 | - | - |
0.6935 | 68500 | 0.0018 | - | - |
0.6986 | 69000 | 0.0019 | - | - |
0.7036 | 69500 | 0.0018 | - | - |
0.7087 | 70000 | 0.0018 | - | - |
0.7137 | 70500 | 0.0018 | - | - |
0.7188 | 71000 | 0.0018 | - | - |
0.7239 | 71500 | 0.0018 | - | - |
0.7289 | 72000 | 0.0018 | - | - |
0.7340 | 72500 | 0.0018 | - | - |
0.7390 | 73000 | 0.0018 | - | - |
0.7441 | 73500 | 0.0018 | - | - |
0.7492 | 74000 | 0.0018 | - | - |
0.7542 | 74500 | 0.0018 | - | - |
0.7593 | 75000 | 0.0018 | - | - |
0.7644 | 75500 | 0.0018 | - | - |
0.7694 | 76000 | 0.0018 | - | - |
0.7745 | 76500 | 0.0018 | - | - |
0.7795 | 77000 | 0.0018 | - | - |
0.7846 | 77500 | 0.0018 | - | - |
0.7897 | 78000 | 0.0018 | - | - |
0.7947 | 78500 | 0.0018 | - | - |
0.7998 | 79000 | 0.0018 | - | - |
0.8049 | 79500 | 0.0018 | - | - |
0.8099 | 80000 | 0.0018 | - | - |
0.8150 | 80500 | 0.0018 | - | - |
0.8200 | 81000 | 0.0018 | - | - |
0.8251 | 81500 | 0.0018 | - | - |
0.8302 | 82000 | 0.0018 | - | - |
0.8352 | 82500 | 0.0019 | - | - |
0.8403 | 83000 | 0.0018 | - | - |
0.8453 | 83500 | 0.0018 | - | - |
0.8504 | 84000 | 0.0018 | - | - |
0.8555 | 84500 | 0.0018 | - | - |
0.8605 | 85000 | 0.0018 | - | - |
0.8656 | 85500 | 0.0018 | - | - |
0.8707 | 86000 | 0.0018 | - | - |
0.8757 | 86500 | 0.0018 | - | - |
0.8808 | 87000 | 0.0018 | - | - |
0.8858 | 87500 | 0.0018 | - | - |
0.8909 | 88000 | 0.0018 | - | - |
0.8960 | 88500 | 0.0018 | - | - |
0.9010 | 89000 | 0.0018 | - | - |
0.9061 | 89500 | 0.0018 | - | - |
0.9112 | 90000 | 0.0018 | - | - |
0.9162 | 90500 | 0.0018 | - | - |
0.9213 | 91000 | 0.0018 | - | - |
0.9263 | 91500 | 0.0018 | - | - |
0.9314 | 92000 | 0.0018 | - | - |
0.9365 | 92500 | 0.0018 | - | - |
0.9415 | 93000 | 0.0018 | - | - |
0.9466 | 93500 | 0.0018 | - | - |
0.9516 | 94000 | 0.0018 | - | - |
0.9567 | 94500 | 0.0018 | - | - |
0.9618 | 95000 | 0.0018 | - | - |
0.9668 | 95500 | 0.0018 | - | - |
0.9719 | 96000 | 0.0018 | - | - |
0.9770 | 96500 | 0.0018 | - | - |
0.9820 | 97000 | 0.0018 | - | - |
0.9871 | 97500 | 0.0018 | - | - |
0.9921 | 98000 | 0.0018 | - | - |
0.9972 | 98500 | 0.0018 | - | - |
1.0 | 98776 | - | 0.0021 | -0.17975432 |
0.0051 | 500 | 0.0018 | - | - |
0.0101 | 1000 | 0.0018 | - | - |
0.0152 | 1500 | 0.0018 | - | - |
0.0202 | 2000 | 0.0018 | - | - |
0.0253 | 2500 | 0.0018 | - | - |
0.0304 | 3000 | 0.0018 | - | - |
0.0354 | 3500 | 0.0018 | - | - |
0.0405 | 4000 | 0.0018 | - | - |
0.0456 | 4500 | 0.0018 | - | - |
0.0506 | 5000 | 0.0018 | - | - |
0.0557 | 5500 | 0.0018 | - | - |
0.0607 | 6000 | 0.0018 | - | - |
0.0658 | 6500 | 0.0018 | - | - |
0.0709 | 7000 | 0.0018 | - | - |
0.0759 | 7500 | 0.0018 | - | - |
0.0810 | 8000 | 0.0018 | - | - |
0.0861 | 8500 | 0.0018 | - | - |
0.0911 | 9000 | 0.0018 | - | - |
0.0962 | 9500 | 0.0018 | - | - |
0.1012 | 10000 | 0.0018 | - | - |
0.1063 | 10500 | 0.0018 | - | - |
0.1114 | 11000 | 0.0018 | - | - |
0.1164 | 11500 | 0.0018 | - | - |
0.1215 | 12000 | 0.0018 | - | - |
0.1265 | 12500 | 0.0018 | - | - |
0.1316 | 13000 | 0.0018 | - | - |
0.1367 | 13500 | 0.0018 | - | - |
0.1417 | 14000 | 0.0018 | - | - |
0.1468 | 14500 | 0.0018 | - | - |
0.1519 | 15000 | 0.0018 | - | - |
0.1569 | 15500 | 0.0018 | - | - |
0.1620 | 16000 | 0.0018 | - | - |
0.1670 | 16500 | 0.0018 | - | - |
0.1721 | 17000 | 0.0018 | - | - |
0.1772 | 17500 | 0.0018 | - | - |
0.1822 | 18000 | 0.0018 | - | - |
0.1873 | 18500 | 0.0018 | - | - |
0.1924 | 19000 | 0.0018 | - | - |
0.1974 | 19500 | 0.0018 | - | - |
0.2025 | 20000 | 0.0018 | - | - |
0.2075 | 20500 | 0.0018 | - | - |
0.2126 | 21000 | 0.0018 | - | - |
0.2177 | 21500 | 0.0018 | - | - |
0.2227 | 22000 | 0.0018 | - | - |
0.2278 | 22500 | 0.0018 | - | - |
0.2329 | 23000 | 0.0018 | - | - |
0.2379 | 23500 | 0.0018 | - | - |
0.2430 | 24000 | 0.0018 | - | - |
0.2480 | 24500 | 0.0018 | - | - |
0.2531 | 25000 | 0.0018 | - | - |
0.2582 | 25500 | 0.0018 | - | - |
0.2632 | 26000 | 0.0018 | - | - |
0.2683 | 26500 | 0.0018 | - | - |
0.2733 | 27000 | 0.0018 | - | - |
0.2784 | 27500 | 0.0018 | - | - |
0.2835 | 28000 | 0.0018 | - | - |
0.2885 | 28500 | 0.0018 | - | - |
0.2936 | 29000 | 0.0018 | - | - |
0.2987 | 29500 | 0.0018 | - | - |
0.3037 | 30000 | 0.0018 | - | - |
0.3088 | 30500 | 0.0018 | - | - |
0.3138 | 31000 | 0.0018 | - | - |
0.3189 | 31500 | 0.0018 | - | - |
0.3240 | 32000 | 0.0018 | - | - |
0.3290 | 32500 | 0.0018 | - | - |
0.3341 | 33000 | 0.0018 | - | - |
0.3392 | 33500 | 0.0018 | - | - |
0.3442 | 34000 | 0.0018 | - | - |
0.3493 | 34500 | 0.0018 | - | - |
0.3543 | 35000 | 0.0018 | - | - |
0.3594 | 35500 | 0.0018 | - | - |
0.3645 | 36000 | 0.0018 | - | - |
0.3695 | 36500 | 0.0018 | - | - |
0.3746 | 37000 | 0.0018 | - | - |
0.3796 | 37500 | 0.0018 | - | - |
0.3847 | 38000 | 0.0018 | - | - |
0.3898 | 38500 | 0.0018 | - | - |
0.3948 | 39000 | 0.0018 | - | - |
0.3999 | 39500 | 0.0018 | - | - |
0.4050 | 40000 | 0.0018 | - | - |
0.4100 | 40500 | 0.0018 | - | - |
0.4151 | 41000 | 0.0018 | - | - |
0.4201 | 41500 | 0.0018 | - | - |
0.4252 | 42000 | 0.0018 | - | - |
0.4303 | 42500 | 0.0018 | - | - |
0.4353 | 43000 | 0.0018 | - | - |
0.4404 | 43500 | 0.0018 | - | - |
0.4455 | 44000 | 0.0018 | - | - |
0.4505 | 44500 | 0.0018 | - | - |
0.4556 | 45000 | 0.0018 | - | - |
0.4606 | 45500 | 0.0018 | - | - |
0.4657 | 46000 | 0.0018 | - | - |
0.4708 | 46500 | 0.0018 | - | - |
0.4758 | 47000 | 0.0018 | - | - |
0.4809 | 47500 | 0.0018 | - | - |
0.4859 | 48000 | 0.0018 | - | - |
0.4910 | 48500 | 0.0018 | - | - |
0.4961 | 49000 | 0.0018 | - | - |
0.5011 | 49500 | 0.0018 | - | - |
0.5062 | 50000 | 0.0018 | - | - |
0.5113 | 50500 | 0.0018 | - | - |
0.5163 | 51000 | 0.0018 | - | - |
0.5214 | 51500 | 0.0018 | - | - |
0.5264 | 52000 | 0.0018 | - | - |
0.5315 | 52500 | 0.0018 | - | - |
0.5366 | 53000 | 0.0018 | - | - |
0.5416 | 53500 | 0.0018 | - | - |
0.5467 | 54000 | 0.0018 | - | - |
0.5518 | 54500 | 0.0018 | - | - |
0.5568 | 55000 | 0.0018 | - | - |
0.5619 | 55500 | 0.0018 | - | - |
0.5669 | 56000 | 0.0018 | - | - |
0.5720 | 56500 | 0.0018 | - | - |
0.5771 | 57000 | 0.0018 | - | - |
0.5821 | 57500 | 0.0018 | - | - |
0.5872 | 58000 | 0.0018 | - | - |
0.5922 | 58500 | 0.0018 | - | - |
0.5973 | 59000 | 0.0018 | - | - |
0.6024 | 59500 | 0.0018 | - | - |
0.6074 | 60000 | 0.0018 | - | - |
0.6125 | 60500 | 0.0018 | - | - |
0.6176 | 61000 | 0.0018 | - | - |
0.6226 | 61500 | 0.0018 | - | - |
0.6277 | 62000 | 0.0018 | - | - |
0.6327 | 62500 | 0.0018 | - | - |
0.6378 | 63000 | 0.0018 | - | - |
0.6429 | 63500 | 0.0018 | - | - |
0.6479 | 64000 | 0.0018 | - | - |
0.6530 | 64500 | 0.0018 | - | - |
0.6581 | 65000 | 0.0018 | - | - |
0.6631 | 65500 | 0.0018 | - | - |
0.6682 | 66000 | 0.0018 | - | - |
0.6732 | 66500 | 0.0018 | - | - |
0.6783 | 67000 | 0.0018 | - | - |
0.6834 | 67500 | 0.0018 | - | - |
0.6884 | 68000 | 0.0018 | - | - |
0.6935 | 68500 | 0.0018 | - | - |
0.6986 | 69000 | 0.0018 | - | - |
0.7036 | 69500 | 0.0018 | - | - |
0.7087 | 70000 | 0.0018 | - | - |
0.7137 | 70500 | 0.0018 | - | - |
0.7188 | 71000 | 0.0018 | - | - |
0.7239 | 71500 | 0.0018 | - | - |
0.7289 | 72000 | 0.0018 | - | - |
0.7340 | 72500 | 0.0018 | - | - |
0.7390 | 73000 | 0.0018 | - | - |
0.7441 | 73500 | 0.0018 | - | - |
0.7492 | 74000 | 0.0018 | - | - |
0.7542 | 74500 | 0.0018 | - | - |
0.7593 | 75000 | 0.0018 | - | - |
0.7644 | 75500 | 0.0018 | - | - |
0.7694 | 76000 | 0.0018 | - | - |
0.7745 | 76500 | 0.0018 | - | - |
0.7795 | 77000 | 0.0018 | - | - |
0.7846 | 77500 | 0.0018 | - | - |
0.7897 | 78000 | 0.0018 | - | - |
0.7947 | 78500 | 0.0018 | - | - |
0.7998 | 79000 | 0.0018 | - | - |
0.8049 | 79500 | 0.0018 | - | - |
0.8099 | 80000 | 0.0018 | - | - |
0.8150 | 80500 | 0.0018 | - | - |
0.8200 | 81000 | 0.0018 | - | - |
0.8251 | 81500 | 0.0018 | - | - |
0.8302 | 82000 | 0.0018 | - | - |
0.8352 | 82500 | 0.0018 | - | - |
0.8403 | 83000 | 0.0018 | - | - |
0.8453 | 83500 | 0.0018 | - | - |
0.8504 | 84000 | 0.0018 | - | - |
0.8555 | 84500 | 0.0018 | - | - |
0.8605 | 85000 | 0.0018 | - | - |
0.8656 | 85500 | 0.0018 | - | - |
0.8707 | 86000 | 0.0018 | - | - |
0.8757 | 86500 | 0.0018 | - | - |
0.8808 | 87000 | 0.0018 | - | - |
0.8858 | 87500 | 0.0018 | - | - |
0.8909 | 88000 | 0.0018 | - | - |
0.8960 | 88500 | 0.0018 | - | - |
0.9010 | 89000 | 0.0018 | - | - |
0.9061 | 89500 | 0.0018 | - | - |
0.9112 | 90000 | 0.0018 | - | - |
0.9162 | 90500 | 0.0018 | - | - |
0.9213 | 91000 | 0.0018 | - | - |
0.9263 | 91500 | 0.0018 | - | - |
0.9314 | 92000 | 0.0018 | - | - |
0.9365 | 92500 | 0.0018 | - | - |
0.9415 | 93000 | 0.0018 | - | - |
0.9466 | 93500 | 0.0018 | - | - |
0.9516 | 94000 | 0.0018 | - | - |
0.9567 | 94500 | 0.0018 | - | - |
0.9618 | 95000 | 0.0017 | - | - |
0.9668 | 95500 | 0.0018 | - | - |
0.9719 | 96000 | 0.0018 | - | - |
0.9770 | 96500 | 0.0018 | - | - |
0.9820 | 97000 | 0.0018 | - | - |
0.9871 | 97500 | 0.0018 | - | - |
0.9921 | 98000 | 0.0018 | - | - |
0.9972 | 98500 | 0.0018 | - | - |
1.0 | 98776 | - | 0.0021 | -0.17605598 |
0.0051 | 500 | 0.0018 | - | - |
0.0101 | 1000 | 0.0018 | - | - |
0.0152 | 1500 | 0.0018 | - | - |
0.0202 | 2000 | 0.0018 | - | - |
0.0253 | 2500 | 0.0018 | - | - |
0.0304 | 3000 | 0.0018 | - | - |
0.0354 | 3500 | 0.0018 | - | - |
0.0405 | 4000 | 0.0018 | - | - |
0.0456 | 4500 | 0.0018 | - | - |
0.0506 | 5000 | 0.0018 | - | - |
0.0557 | 5500 | 0.0018 | - | - |
0.0607 | 6000 | 0.0018 | - | - |
0.0658 | 6500 | 0.0018 | - | - |
0.0709 | 7000 | 0.0018 | - | - |
0.0759 | 7500 | 0.0018 | - | - |
0.0810 | 8000 | 0.0018 | - | - |
0.0861 | 8500 | 0.0018 | - | - |
0.0911 | 9000 | 0.0018 | - | - |
0.0962 | 9500 | 0.0018 | - | - |
0.1012 | 10000 | 0.0018 | - | - |
0.1063 | 10500 | 0.0018 | - | - |
0.1114 | 11000 | 0.0018 | - | - |
0.1164 | 11500 | 0.0018 | - | - |
0.1215 | 12000 | 0.0018 | - | - |
0.1265 | 12500 | 0.0018 | - | - |
0.1316 | 13000 | 0.0018 | - | - |
0.1367 | 13500 | 0.0018 | - | - |
0.1417 | 14000 | 0.0018 | - | - |
0.1468 | 14500 | 0.0018 | - | - |
0.1519 | 15000 | 0.0018 | - | - |
0.1569 | 15500 | 0.0018 | - | - |
0.1620 | 16000 | 0.0018 | - | - |
0.1670 | 16500 | 0.0018 | - | - |
0.1721 | 17000 | 0.0018 | - | - |
0.1772 | 17500 | 0.0018 | - | - |
0.1822 | 18000 | 0.0018 | - | - |
0.1873 | 18500 | 0.0018 | - | - |
0.1924 | 19000 | 0.0018 | - | - |
0.1974 | 19500 | 0.0018 | - | - |
0.2025 | 20000 | 0.0018 | - | - |
0.2075 | 20500 | 0.0018 | - | - |
0.2126 | 21000 | 0.0018 | - | - |
0.2177 | 21500 | 0.0018 | - | - |
0.2227 | 22000 | 0.0018 | - | - |
0.2278 | 22500 | 0.0017 | - | - |
0.2329 | 23000 | 0.0018 | - | - |
0.2379 | 23500 | 0.0018 | - | - |
0.2430 | 24000 | 0.0018 | - | - |
0.2480 | 24500 | 0.0018 | - | - |
0.2531 | 25000 | 0.0018 | - | - |
0.2582 | 25500 | 0.0018 | - | - |
0.2632 | 26000 | 0.0018 | - | - |
0.2683 | 26500 | 0.0018 | - | - |
0.2733 | 27000 | 0.0018 | - | - |
0.2784 | 27500 | 0.0018 | - | - |
0.2835 | 28000 | 0.0018 | - | - |
0.2885 | 28500 | 0.0018 | - | - |
0.2936 | 29000 | 0.0018 | - | - |
0.2987 | 29500 | 0.0018 | - | - |
0.3037 | 30000 | 0.0018 | - | - |
0.3088 | 30500 | 0.0018 | - | - |
0.3138 | 31000 | 0.0018 | - | - |
0.3189 | 31500 | 0.0018 | - | - |
0.3240 | 32000 | 0.0018 | - | - |
0.3290 | 32500 | 0.0018 | - | - |
0.3341 | 33000 | 0.0018 | - | - |
0.3392 | 33500 | 0.0018 | - | - |
0.3442 | 34000 | 0.0018 | - | - |
0.3493 | 34500 | 0.0018 | - | - |
0.3543 | 35000 | 0.0018 | - | - |
0.3594 | 35500 | 0.0018 | - | - |
0.3645 | 36000 | 0.0018 | - | - |
0.3695 | 36500 | 0.0018 | - | - |
0.3746 | 37000 | 0.0018 | - | - |
0.3796 | 37500 | 0.0018 | - | - |
0.3847 | 38000 | 0.0018 | - | - |
0.3898 | 38500 | 0.0018 | - | - |
0.3948 | 39000 | 0.0018 | - | - |
0.3999 | 39500 | 0.0018 | - | - |
0.4050 | 40000 | 0.0018 | - | - |
0.4100 | 40500 | 0.0018 | - | - |
0.4151 | 41000 | 0.0018 | - | - |
0.4201 | 41500 | 0.0018 | - | - |
0.4252 | 42000 | 0.0018 | - | - |
0.4303 | 42500 | 0.0018 | - | - |
0.4353 | 43000 | 0.0018 | - | - |
0.4404 | 43500 | 0.0018 | - | - |
0.4455 | 44000 | 0.0018 | - | - |
0.4505 | 44500 | 0.0018 | - | - |
0.4556 | 45000 | 0.0018 | - | - |
0.4606 | 45500 | 0.0018 | - | - |
0.4657 | 46000 | 0.0018 | - | - |
0.4708 | 46500 | 0.0018 | - | - |
0.4758 | 47000 | 0.0018 | - | - |
0.4809 | 47500 | 0.0018 | - | - |
0.4859 | 48000 | 0.0018 | - | - |
0.4910 | 48500 | 0.0018 | - | - |
0.4961 | 49000 | 0.0018 | - | - |
0.5011 | 49500 | 0.0018 | - | - |
0.5062 | 50000 | 0.0018 | - | - |
0.5113 | 50500 | 0.0018 | - | - |
0.5163 | 51000 | 0.0018 | - | - |
0.5214 | 51500 | 0.0017 | - | - |
0.5264 | 52000 | 0.0018 | - | - |
0.5315 | 52500 | 0.0018 | - | - |
0.5366 | 53000 | 0.0018 | - | - |
0.5416 | 53500 | 0.0018 | - | - |
0.5467 | 54000 | 0.0018 | - | - |
0.5518 | 54500 | 0.0018 | - | - |
0.5568 | 55000 | 0.0017 | - | - |
0.5619 | 55500 | 0.0017 | - | - |
0.5669 | 56000 | 0.0018 | - | - |
0.5720 | 56500 | 0.0017 | - | - |
0.5771 | 57000 | 0.0017 | - | - |
0.5821 | 57500 | 0.0017 | - | - |
0.5872 | 58000 | 0.0018 | - | - |
0.5922 | 58500 | 0.0017 | - | - |
0.5973 | 59000 | 0.0018 | - | - |
0.6024 | 59500 | 0.0018 | - | - |
0.6074 | 60000 | 0.0017 | - | - |
0.6125 | 60500 | 0.0017 | - | - |
0.6176 | 61000 | 0.0018 | - | - |
0.6226 | 61500 | 0.0017 | - | - |
0.6277 | 62000 | 0.0018 | - | - |
0.6327 | 62500 | 0.0018 | - | - |
0.6378 | 63000 | 0.0018 | - | - |
0.6429 | 63500 | 0.0018 | - | - |
0.6479 | 64000 | 0.0017 | - | - |
0.6530 | 64500 | 0.0017 | - | - |
0.6581 | 65000 | 0.0017 | - | - |
0.6631 | 65500 | 0.0017 | - | - |
0.6682 | 66000 | 0.0018 | - | - |
0.6732 | 66500 | 0.0017 | - | - |
0.6783 | 67000 | 0.0017 | - | - |
0.6834 | 67500 | 0.0017 | - | - |
0.6884 | 68000 | 0.0018 | - | - |
0.6935 | 68500 | 0.0017 | - | - |
0.6986 | 69000 | 0.0018 | - | - |
0.7036 | 69500 | 0.0017 | - | - |
0.7087 | 70000 | 0.0017 | - | - |
0.7137 | 70500 | 0.0017 | - | - |
0.7188 | 71000 | 0.0017 | - | - |
0.7239 | 71500 | 0.0017 | - | - |
0.7289 | 72000 | 0.0017 | - | - |
0.7340 | 72500 | 0.0017 | - | - |
0.7390 | 73000 | 0.0017 | - | - |
0.7441 | 73500 | 0.0017 | - | - |
0.7492 | 74000 | 0.0018 | - | - |
0.7542 | 74500 | 0.0017 | - | - |
0.7593 | 75000 | 0.0017 | - | - |
0.7644 | 75500 | 0.0017 | - | - |
0.7694 | 76000 | 0.0017 | - | - |
0.7745 | 76500 | 0.0017 | - | - |
0.7795 | 77000 | 0.0017 | - | - |
0.7846 | 77500 | 0.0017 | - | - |
0.7897 | 78000 | 0.0017 | - | - |
0.7947 | 78500 | 0.0017 | - | - |
0.7998 | 79000 | 0.0017 | - | - |
0.8049 | 79500 | 0.0017 | - | - |
0.8099 | 80000 | 0.0017 | - | - |
0.8150 | 80500 | 0.0017 | - | - |
0.8200 | 81000 | 0.0017 | - | - |
0.8251 | 81500 | 0.0017 | - | - |
0.8302 | 82000 | 0.0017 | - | - |
0.8352 | 82500 | 0.0018 | - | - |
0.8403 | 83000 | 0.0017 | - | - |
0.8453 | 83500 | 0.0017 | - | - |
0.8504 | 84000 | 0.0017 | - | - |
0.8555 | 84500 | 0.0017 | - | - |
0.8605 | 85000 | 0.0017 | - | - |
0.8656 | 85500 | 0.0017 | - | - |
0.8707 | 86000 | 0.0017 | - | - |
0.8757 | 86500 | 0.0017 | - | - |
0.8808 | 87000 | 0.0017 | - | - |
0.8858 | 87500 | 0.0017 | - | - |
0.8909 | 88000 | 0.0017 | - | - |
0.8960 | 88500 | 0.0017 | - | - |
0.9010 | 89000 | 0.0017 | - | - |
0.9061 | 89500 | 0.0017 | - | - |
0.9112 | 90000 | 0.0017 | - | - |
0.9162 | 90500 | 0.0017 | - | - |
0.9213 | 91000 | 0.0017 | - | - |
0.9263 | 91500 | 0.0017 | - | - |
0.9314 | 92000 | 0.0017 | - | - |
0.9365 | 92500 | 0.0017 | - | - |
0.9415 | 93000 | 0.0017 | - | - |
0.9466 | 93500 | 0.0017 | - | - |
0.9516 | 94000 | 0.0017 | - | - |
0.9567 | 94500 | 0.0017 | - | - |
0.9618 | 95000 | 0.0017 | - | - |
0.9668 | 95500 | 0.0017 | - | - |
0.9719 | 96000 | 0.0017 | - | - |
0.9770 | 96500 | 0.0017 | - | - |
0.9820 | 97000 | 0.0017 | - | - |
0.9871 | 97500 | 0.0017 | - | - |
0.9921 | 98000 | 0.0017 | - | - |
0.9972 | 98500 | 0.0017 | - | - |
1.0 | 98776 | - | 0.0021 | -0.17373772 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 3.3.1
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.0
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}