Edit model card

Baseline Model trained on arinfo_sample_dataset_finaltffwjv58 to apply classification on model

Metrics of the best model:

accuracy 0.930688

recall_macro 0.655991

precision_macro 0.640972

f1_macro 0.638021

Name: DecisionTreeClassifier(class_weight='balanced', max_depth=2249), dtype: float64

See model plot below:

Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types=             continuous  dirty_float  low_card_int  ...   date  free_string  useless

rto False False False ... False True False ownerNum False False False ... False False False cc False False False ... False False False insurance False False False ... False False False weight True False False ... False False False financer False False False ... False True False fu... class False False False ... False False False state False False False ... False False False year False False False ... False False False categoryId False False False ... False False False onroadPrice True False False ... False False False price_FAIR True False False ... False False False[13 rows x 7 columns])),('decisiontreeclassifier',DecisionTreeClassifier(class_weight='balanced',max_depth=2249))])

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Disclaimer: This model is trained with dabl library as a baseline, for better results, use AutoTrain.

Logs of training including the models tried in the process can be found in logs.txt

Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.