See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Llama-3.2-3B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- Omni-MATH_train_data.json
ds_type: json
path: /workspace/input_data/Omni-MATH_train_data.json
type:
field_input: domain
field_instruction: problem
field_output: solution
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 10
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: besimray/miner_id_3_7a3ce630-aa05-41fd-9ccb-55fbe77a4f6b_1729737185
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 1000
micro_batch_size: 5
mlflow_experiment_name: /tmp/Omni-MATH_train_data.json
model_type: LlamaForCausalLM
num_epochs: 5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
save_strategy: steps
sequence_len: 4096
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: besimray24-rayon
wandb_mode: online
wandb_project: Public_TuningSN
wandb_run: miner_id_24
wandb_runid: 7a3ce630-aa05-41fd-9ccb-55fbe77a4f6b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
miner_id_3_7a3ce630-aa05-41fd-9ccb-55fbe77a4f6b_1729737185
This model is a fine-tuned version of unsloth/Llama-3.2-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9668
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0856 | 0.0049 | 1 | 1.1341 |
0.9932 | 0.0486 | 10 | 1.0513 |
0.9157 | 0.0972 | 20 | 1.0124 |
0.9999 | 0.1458 | 30 | 0.9980 |
0.8839 | 0.1944 | 40 | 0.9909 |
1.0734 | 0.2430 | 50 | 0.9855 |
0.9152 | 0.2916 | 60 | 0.9828 |
1.1024 | 0.3402 | 70 | 0.9797 |
0.938 | 0.3888 | 80 | 0.9775 |
0.8866 | 0.4374 | 90 | 0.9766 |
0.9912 | 0.4860 | 100 | 0.9744 |
0.9395 | 0.5346 | 110 | 0.9725 |
0.9197 | 0.5832 | 120 | 0.9711 |
0.8917 | 0.6318 | 130 | 0.9689 |
0.9746 | 0.6804 | 140 | 0.9663 |
0.8681 | 0.7290 | 150 | 0.9668 |
0.8568 | 0.7776 | 160 | 0.9672 |
1.062 | 0.8262 | 170 | 0.9668 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.1+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 11
Model tree for besimray/miner_id_3_7a3ce630-aa05-41fd-9ccb-55fbe77a4f6b_1729737185
Base model
meta-llama/Llama-3.2-3B-Instruct
Finetuned
unsloth/Llama-3.2-3B-Instruct