See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Llama-3.2-1B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- o1-journey_train_data.json
ds_type: json
path: /workspace/input_data/o1-journey_train_data.json
type:
field_input: question
field_instruction: answer
field_output: longCOT
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 10
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hours_to_complete: 2
hub_model_id: besimray/miner_id_2_c4650a4d-c32d-4e0f-a27c-171ba40b07e6_1730896832
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/o1-journey_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
save_strategy: steps
sequence_len: 4096
started_at: '2024-11-06T12:40:32.335166'
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: besimray24-rayon
wandb_mode: online
wandb_project: Public_TuningSN
wandb_run: miner_id_24
wandb_runid: c4650a4d-c32d-4e0f-a27c-171ba40b07e6
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
miner_id_2_c4650a4d-c32d-4e0f-a27c-171ba40b07e6_1730896832
This model is a fine-tuned version of unsloth/Llama-3.2-1B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7048
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 53
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9692 | 0.0571 | 1 | 1.0109 |
0.8542 | 0.5714 | 10 | 0.9411 |
0.7241 | 1.1429 | 20 | 0.7844 |
0.678 | 1.7143 | 30 | 0.7272 |
0.6679 | 2.2857 | 40 | 0.7076 |
0.6468 | 2.8571 | 50 | 0.7048 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for besimray/miner_id_2_c4650a4d-c32d-4e0f-a27c-171ba40b07e6_1730896832
Base model
meta-llama/Llama-3.2-1B-Instruct
Finetuned
unsloth/Llama-3.2-1B-Instruct