angela_shuffle_punctuation_regular_eval
This model is a fine-tuned version of Davlan/afro-xlmr-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1556
- Precision: 0.3691
- Recall: 0.2130
- F1: 0.2701
- Accuracy: 0.9542
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1804 | 1.0 | 1283 | 0.1530 | 0.4050 | 0.1046 | 0.1663 | 0.9579 |
0.1608 | 2.0 | 2566 | 0.1481 | 0.4263 | 0.1280 | 0.1969 | 0.9584 |
0.1499 | 3.0 | 3849 | 0.1462 | 0.4386 | 0.1367 | 0.2085 | 0.9586 |
0.1389 | 4.0 | 5132 | 0.1515 | 0.4013 | 0.1862 | 0.2543 | 0.9567 |
0.1253 | 5.0 | 6415 | 0.1556 | 0.3691 | 0.2130 | 0.2701 | 0.9542 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3
- Downloads last month
- 113
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for azhang1212/angela_shuffle_punctuation_regular_eval
Base model
Davlan/afro-xlmr-base