Edit model card

vit-emotion-classifier

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3090
  • Accuracy: 0.55

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4729 1.0 10 1.5748 0.4875
1.4484 2.0 20 1.5526 0.4875
1.4053 3.0 30 1.5228 0.4562
1.3492 4.0 40 1.4721 0.5
1.2664 5.0 50 1.4448 0.5125
1.2005 6.0 60 1.3783 0.5062
1.1231 7.0 70 1.3427 0.5375
1.0472 8.0 80 1.2859 0.5625
0.9852 9.0 90 1.2732 0.5813
0.8974 10.0 100 1.2220 0.575
0.8314 11.0 110 1.2782 0.5312
0.7964 12.0 120 1.2889 0.5437
0.6993 13.0 130 1.2989 0.5188
0.6915 14.0 140 1.3053 0.5375
0.608 15.0 150 1.2563 0.5875
0.5416 16.0 160 1.2473 0.5563
0.5202 17.0 170 1.2753 0.5625
0.5047 18.0 180 1.2791 0.5563
0.4779 19.0 190 1.3142 0.5437
0.4569 20.0 200 1.2743 0.5813
0.4313 21.0 210 1.2727 0.5312
0.4536 22.0 220 1.2514 0.5938
0.4166 23.0 230 1.3260 0.5312
0.3673 24.0 240 1.2950 0.55
0.3544 25.0 250 1.2268 0.5875
0.3568 26.0 260 1.3874 0.4875
0.3509 27.0 270 1.3735 0.525
0.3711 28.0 280 1.2886 0.5375
0.3555 29.0 290 1.3152 0.5375
0.3068 30.0 300 1.3927 0.5375
0.3007 31.0 310 1.4131 0.5188
0.3062 32.0 320 1.3256 0.575
0.3114 33.0 330 1.3714 0.5
0.279 34.0 340 1.4198 0.5188
0.2888 35.0 350 1.5321 0.475
0.2647 36.0 360 1.4342 0.5062
0.2574 37.0 370 1.4149 0.5563
0.2539 38.0 380 1.4286 0.5125
0.2566 39.0 390 1.4805 0.5125
0.2298 40.0 400 1.3820 0.4875
0.2236 41.0 410 1.3683 0.5437
0.2201 42.0 420 1.3332 0.5687
0.2696 43.0 430 1.4725 0.5188
0.2319 44.0 440 1.3926 0.5375
0.2269 45.0 450 1.3477 0.5563
0.2201 46.0 460 1.4054 0.5563
0.2114 47.0 470 1.3308 0.55
0.2319 48.0 480 1.3353 0.5625
0.2177 49.0 490 1.3019 0.5437
0.2042 50.0 500 1.3089 0.5875

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asyafalni/vit-emotion-classifier

Finetuned
(1677)
this model

Evaluation results