mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1-seed20241201

This model use same hyper-parameter with asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1, except RANDOM_SEED.

Original version use RANDOM_SEED=42, this version use RANDOM_SEED=20241201.

This model is a fine-tuned version of asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6134
  • F1 Macro: 0.8616
  • F1 Micro: 0.8634
  • Accuracy Balanced: 0.8616
  • Accuracy: 0.8634
  • Precision Macro: 0.8616
  • Recall Macro: 0.8616
  • Precision Micro: 0.8634
  • Recall Micro: 0.8634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 20241201
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.2034 0.17 200 0.4241 0.8481 0.8518 0.8451 0.8518 0.8541 0.8451 0.8518 0.8518
0.219 0.34 400 0.4178 0.8608 0.8624 0.8615 0.8624 0.8602 0.8615 0.8624 0.8624
0.2142 0.51 600 0.3810 0.8572 0.8602 0.8548 0.8602 0.8613 0.8548 0.8602 0.8602
0.199 0.68 800 0.4314 0.8537 0.8571 0.8508 0.8571 0.8590 0.8508 0.8571 0.8571
0.2005 0.85 1000 0.4282 0.8572 0.8602 0.8547 0.8602 0.8615 0.8547 0.8602 0.8602
0.1846 1.02 1200 0.4631 0.8691 0.8703 0.8707 0.8703 0.8681 0.8707 0.8703 0.8703
0.154 1.19 1400 0.4922 0.8599 0.8613 0.8610 0.8613 0.8590 0.8610 0.8613 0.8613
0.1432 1.35 1600 0.5020 0.8540 0.8560 0.8540 0.8560 0.8541 0.8540 0.8560 0.8560
0.1335 1.52 1800 0.5313 0.8479 0.8507 0.8461 0.8507 0.8505 0.8461 0.8507 0.8507
0.1373 1.69 2000 0.5018 0.8546 0.8571 0.8533 0.8571 0.8563 0.8533 0.8571 0.8571
0.128 1.86 2200 0.4896 0.8644 0.8655 0.8665 0.8655 0.8633 0.8665 0.8655 0.8655
0.1257 2.03 2400 0.4922 0.8648 0.8666 0.8648 0.8666 0.8648 0.8648 0.8666 0.8666
0.0959 2.2 2600 0.5814 0.8589 0.8613 0.8576 0.8613 0.8606 0.8576 0.8613 0.8613
0.0918 2.37 2800 0.5987 0.8617 0.8634 0.8618 0.8634 0.8615 0.8618 0.8634 0.8634
0.0992 2.54 3000 0.6117 0.8631 0.8650 0.8629 0.8650 0.8634 0.8629 0.8650 0.8650
0.0897 2.71 3200 0.6191 0.8583 0.8602 0.8583 0.8602 0.8584 0.8583 0.8602 0.8602
0.1065 2.88 3400 0.6221 0.8625 0.8645 0.8619 0.8645 0.8631 0.8619 0.8645 0.8645

Eval result

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test eval_dataset test_dataset
eval_loss 0.575 0.356 0.613 0.538
eval_f1_macro 0.87 0.896 0.862 0.875
eval_f1_micro 0.871 0.896 0.863 0.876
eval_accuracy_balanced 0.869 0.896 0.862 0.875
eval_accuracy 0.871 0.896 0.863 0.876
eval_precision_macro 0.871 0.898 0.862 0.877
eval_recall_macro 0.869 0.896 0.862 0.875
eval_precision_micro 0.871 0.896 0.863 0.876
eval_recall_micro 0.871 0.896 0.863 0.876
eval_runtime 229.732 4.248 51.374 204.44
eval_samples_per_second 37.0 222.68 36.769 36.964
eval_steps_per_second 0.292 1.883 0.292 0.293
Size of dataset 8500 946 1889 7557

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1-seed20241201

Datasets used to train asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1-seed20241201