|
--- |
|
pipeline_tag: sentence-similarity |
|
language: fr |
|
license: mit |
|
datasets: |
|
- unicamp-dl/mmarco |
|
metrics: |
|
- recall |
|
tags: |
|
- passage-retrieval |
|
library_name: sentence-transformers |
|
base_model: antoinelouis/camembert-L2 |
|
model-index: |
|
- name: biencoder-camembert-L2-mmarcoFR |
|
results: |
|
- task: |
|
type: sentence-similarity |
|
name: Passage Retrieval |
|
dataset: |
|
type: unicamp-dl/mmarco |
|
name: mMARCO-fr |
|
config: french |
|
split: validation |
|
metrics: |
|
- type: recall_at_500 |
|
name: Recall@500 |
|
value: 81.0 |
|
- type: recall_at_100 |
|
name: Recall@100 |
|
value: 66.3 |
|
- type: recall_at_10 |
|
name: Recall@10 |
|
value: 38.5 |
|
- type: mrr_at_10 |
|
name: MRR@10 |
|
value: 20.1 |
|
- type: ndcg_at_10 |
|
name: nDCG@10 |
|
value: 24.3 |
|
- type: map_at_10 |
|
name: MAP@10 |
|
value: 19.7 |
|
--- |
|
|
|
# biencoder-camembert-L2-mmarcoFR |
|
|
|
This is a lightweight dense single-vector bi-encoder model for **French** that can be used for semantic search. |
|
The model maps queries and passages to 768-dimensional dense vectors which are used to compute relevance through cosine similarity. |
|
It uses a [CamemBERT-L2](https://huggingface.co./antoinelouis/camembert-L2) backbone, which is a pruned version of the pre-trained [CamemBERT](https://huggingface.co./camembert-base) |
|
checkpoint with 64% less parameters, obtained by [dropping the top-layers](https://doi.org/10.48550/arXiv.2004.03844) from the original model. |
|
|
|
## Usage |
|
|
|
Here are some examples for using this model with [Sentence-Transformers](#using-sentence-transformers), [FlagEmbedding](#using-flagembedding), or [Huggingface Transformers](#using-huggingface-transformers). |
|
|
|
#### Using Sentence-Transformers |
|
|
|
Start by installing the [library](https://www.SBERT.net): `pip install -U sentence-transformers`. Then, you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."] |
|
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."] |
|
|
|
model = SentenceTransformer('antoinelouis/biencoder-camembert-L2-mmarcoFR') |
|
|
|
q_embeddings = model.encode(queries, normalize_embeddings=True) |
|
p_embeddings = model.encode(passages, normalize_embeddings=True) |
|
|
|
similarity = q_embeddings @ p_embeddings.T |
|
print(similarity) |
|
``` |
|
|
|
#### Using FlagEmbedding |
|
|
|
Start by installing the [library](https://github.com/FlagOpen/FlagEmbedding/): `pip install -U FlagEmbedding`. Then, you can use the model like this: |
|
|
|
```python |
|
from FlagEmbedding import FlagModel |
|
|
|
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."] |
|
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."] |
|
|
|
model = FlagModel('antoinelouis/biencoder-camembert-L2-mmarcoFR') |
|
|
|
q_embeddings = model.encode(queries, normalize_embeddings=True) |
|
p_embeddings = model.encode(passages, normalize_embeddings=True) |
|
|
|
similarity = q_embeddings @ p_embeddings.T |
|
print(similarity) |
|
``` |
|
|
|
#### Using Transformers |
|
|
|
Start by installing the [library](https://huggingface.co./docs/transformers): `pip install -U transformers`. Then, you can use the model like this: |
|
|
|
```python |
|
import torch |
|
from torch.nn.functional import normalize |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
def mean_pooling(model_output, attention_mask): |
|
""" Perform mean pooling on-top of the contextualized word embeddings, while ignoring mask tokens in the mean computation.""" |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."] |
|
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('antoinelouis/biencoder-camembert-L2-mmarcoFR') |
|
model = AutoModel.from_pretrained('antoinelouis/biencoder-camembert-L2-mmarcoFR') |
|
|
|
q_input = tokenizer(queries, padding=True, truncation=True, return_tensors='pt') |
|
p_input = tokenizer(passages, padding=True, truncation=True, return_tensors='pt') |
|
with torch.no_grad(): |
|
q_output = model(**encoded_queries) |
|
p_output = model(**encoded_passages) |
|
q_embeddings = mean_pooling(q_output, q_input['attention_mask']) |
|
q_embedddings = normalize(q_embeddings, p=2, dim=1) |
|
p_embeddings = mean_pooling(p_output, p_input['attention_mask']) |
|
p_embedddings = normalize(p_embeddings, p=2, dim=1) |
|
|
|
similarity = q_embeddings @ p_embeddings.T |
|
print(similarity) |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model is evaluated on the smaller development set of [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/), which consists of 6,980 queries for a corpus of |
|
8.8M candidate passages. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k). |
|
To see how it compares to other neural retrievers in French, check out the [*DécouvrIR*](https://huggingface.co./spaces/antoinelouis/decouvrir) leaderboard. |
|
|
|
## Training |
|
|
|
#### Data |
|
|
|
We use the French training samples from the [mMARCO](https://huggingface.co./datasets/unicamp-dl/mmarco) dataset, a multilingual machine-translated version of MS MARCO |
|
that contains 8.8M passages and 539K training queries. We do not employ the BM25 negatives provided by the official dataset but instead sample harder negatives mined |
|
from 12 distinct dense retrievers, using the [msmarco-hard-negatives](https://huggingface.co./datasets/sentence-transformers/msmarco-hard-negatives) distillation dataset. |
|
|
|
#### Implementation |
|
|
|
The model is initialized from the [camembert-L2](https://huggingface.co./antoinelouis/camembert-L2) checkpoint and optimized via the cross-entropy loss |
|
(as in [DPR](https://doi.org/10.48550/arXiv.2004.04906)) with a temperature of 0.05. It is fine-tuned on one 32GB NVIDIA V100 GPU for 9.8k steps (or 40 epochs) |
|
using the AdamW optimizer with a batch size of 2048, a peak learning rate of 2e-5 with warm up along the first 976 steps and linear scheduling. |
|
We set the maximum sequence lengths for both the questions and passages to 128 tokens. We use the cosine similarity to compute relevance scores. |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@online{louis2024decouvrir, |
|
author = 'Antoine Louis', |
|
title = 'DécouvrIR: A Benchmark for Evaluating the Robustness of Information Retrieval Models in French', |
|
publisher = 'Hugging Face', |
|
month = 'mar', |
|
year = '2024', |
|
url = 'https://huggingface.co./spaces/antoinelouis/decouvrir', |
|
} |
|
``` |