whisper-small-multi-diar-wer
This model is a fine-tuned version of openai/whisper-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 10.4868
- Wer: 100.0
- Cer: 100.4922
- Speech Scored: 10807
- Speech Miss: 1926
- Speech Falarm: 1656
- Speaker Miss: 1926
- Speaker Falarm: 1656
- Speaker Error: 2927
- Speaker Correct: 23.7093
- Diarization Error: 6509
- Frames: 10
- Speaker Wide Frames: 12733
- Speech Scored Ratio: 1080.7
- Speech Miss Ratio: 192.6
- Speech Falarm Ratio: 165.6
- Speaker Correct Ratio: 2.3709
- Speaker Miss Ratio: 0.1513
- Speaker Falarm Ratio: 0.1301
- Speaker Error Ratio: 0.2299
- Diarization Error Ratio: 0.5112
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Speech Scored | Speech Miss | Speech Falarm | Speaker Miss | Speaker Falarm | Speaker Error | Speaker Correct | Diarization Error | Frames | Speaker Wide Frames | Speech Scored Ratio | Speech Miss Ratio | Speech Falarm Ratio | Speaker Correct Ratio | Speaker Miss Ratio | Speaker Falarm Ratio | Speaker Error Ratio | Diarization Error Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 1 | 11.6412 | 100.0 | 189.4586 | 11732 | 1001 | 2061 | 1001 | 11893 | 2169 | 18.5120 | 15063 | 10 | 12733 | 1173.2 | 100.1 | 206.1 | 1.8512 | 0.0786 | 0.9340 | 0.1703 | 1.1830 |
No log | 2.0 | 2 | 11.4959 | 209.5855 | 298.3593 | 11425 | 1308 | 2031 | 1308 | 5103 | 3052 | 21.6567 | 9463 | 10 | 12733 | 1142.5 | 130.8 | 203.1 | 2.1657 | 0.1027 | 0.4008 | 0.2397 | 0.7432 |
No log | 3.0 | 3 | 11.2874 | 572.5389 | 437.2847 | 12060 | 673 | 2169 | 673 | 2169 | 3938 | 22.8547 | 6780 | 10 | 12733 | 1206.0 | 67.3 | 216.9 | 2.2855 | 0.0529 | 0.1703 | 0.3093 | 0.5325 |
No log | 4.0 | 4 | 11.1333 | 535.2332 | 534.6596 | 12537 | 196 | 2237 | 196 | 2237 | 4141 | 22.8567 | 6574 | 10 | 12733 | 1253.7 | 19.6 | 223.7 | 2.2857 | 0.0154 | 0.1757 | 0.3252 | 0.5163 |
No log | 5.0 | 5 | 11.0564 | 100.0 | 100.6153 | 12717 | 16 | 2264 | 16 | 2264 | 4222 | 22.8507 | 6502 | 10 | 12733 | 1271.7 | 1.6 | 226.4 | 2.2851 | 0.0013 | 0.1778 | 0.3316 | 0.5106 |
No log | 6.0 | 6 | 10.9894 | 100.0 | 100.6153 | 12733 | 0 | 2267 | 0 | 2267 | 4232 | 22.8460 | 6499 | 10 | 12733 | 1273.3 | 0.0 | 226.7 | 2.2846 | 0.0 | 0.1780 | 0.3324 | 0.5104 |
No log | 7.0 | 7 | 10.9209 | 100.0 | 100.6153 | 12733 | 0 | 2267 | 0 | 2267 | 4232 | 22.8460 | 6499 | 10 | 12733 | 1273.3 | 0.0 | 226.7 | 2.2846 | 0.0 | 0.1780 | 0.3324 | 0.5104 |
No log | 8.0 | 8 | 10.8541 | 100.0 | 100.6153 | 12733 | 0 | 2267 | 0 | 2267 | 4232 | 22.8460 | 6499 | 10 | 12733 | 1273.3 | 0.0 | 226.7 | 2.2846 | 0.0 | 0.1780 | 0.3324 | 0.5104 |
No log | 9.0 | 9 | 10.7928 | 100.0 | 100.6153 | 12705 | 28 | 2262 | 28 | 2262 | 4212 | 22.8573 | 6502 | 10 | 12733 | 1270.5 | 2.8 | 226.2 | 2.2857 | 0.0022 | 0.1776 | 0.3308 | 0.5106 |
No log | 10.0 | 10 | 10.7401 | 100.0 | 100.6153 | 12535 | 198 | 2240 | 198 | 2240 | 4093 | 22.9173 | 6531 | 10 | 12733 | 1253.5 | 19.8 | 224.0 | 2.2917 | 0.0156 | 0.1759 | 0.3214 | 0.5129 |
No log | 11.0 | 11 | 10.6969 | 100.0 | 100.6153 | 12279 | 454 | 2190 | 454 | 2190 | 3907 | 23.0280 | 6551 | 10 | 12733 | 1227.9 | 45.4 | 219.0 | 2.3028 | 0.0357 | 0.1720 | 0.3068 | 0.5145 |
No log | 12.0 | 12 | 10.6622 | 100.0 | 100.6153 | 12126 | 607 | 2140 | 607 | 2140 | 3804 | 23.0967 | 6551 | 10 | 12733 | 1212.6 | 60.7 | 214.0 | 2.3097 | 0.0477 | 0.1681 | 0.2988 | 0.5145 |
No log | 13.0 | 13 | 10.6341 | 100.0 | 100.6153 | 12131 | 602 | 2126 | 602 | 2126 | 3808 | 23.1040 | 6536 | 10 | 12733 | 1213.1 | 60.2 | 212.6 | 2.3104 | 0.0473 | 0.1670 | 0.2991 | 0.5133 |
No log | 14.0 | 14 | 10.6127 | 100.0 | 100.6153 | 12202 | 531 | 2139 | 531 | 2139 | 3854 | 23.0813 | 6524 | 10 | 12733 | 1220.2 | 53.1 | 213.9 | 2.3081 | 0.0417 | 0.1680 | 0.3027 | 0.5124 |
No log | 15.0 | 15 | 10.5973 | 100.0 | 100.6153 | 12253 | 480 | 2137 | 480 | 2137 | 3889 | 23.0700 | 6506 | 10 | 12733 | 1225.3 | 48.0 | 213.7 | 2.3070 | 0.0377 | 0.1678 | 0.3054 | 0.5110 |
No log | 16.0 | 16 | 10.5863 | 100.0 | 100.6153 | 12239 | 494 | 2107 | 494 | 2107 | 3885 | 23.0860 | 6486 | 10 | 12733 | 1223.9 | 49.4 | 210.7 | 2.3086 | 0.0388 | 0.1655 | 0.3051 | 0.5094 |
No log | 17.0 | 17 | 10.5787 | 100.0 | 100.6153 | 12158 | 575 | 2066 | 575 | 2066 | 3824 | 23.1407 | 6465 | 10 | 12733 | 1215.8 | 57.5 | 206.6 | 2.3141 | 0.0452 | 0.1623 | 0.3003 | 0.5077 |
No log | 18.0 | 18 | 10.5715 | 100.0 | 100.6153 | 12030 | 703 | 2009 | 703 | 2009 | 3740 | 23.2053 | 6452 | 10 | 12733 | 1203.0 | 70.3 | 200.9 | 2.3205 | 0.0552 | 0.1578 | 0.2937 | 0.5067 |
No log | 19.0 | 19 | 10.5638 | 100.0 | 100.6153 | 11866 | 867 | 1943 | 867 | 1943 | 3624 | 23.2947 | 6434 | 10 | 12733 | 1186.6 | 86.7 | 194.3 | 2.3295 | 0.0681 | 0.1526 | 0.2846 | 0.5053 |
No log | 20.0 | 20 | 10.5554 | 100.0 | 100.6153 | 11695 | 1038 | 1892 | 1038 | 1892 | 3514 | 23.3613 | 6444 | 10 | 12733 | 1169.5 | 103.8 | 189.2 | 2.3361 | 0.0815 | 0.1486 | 0.2760 | 0.5061 |
No log | 21.0 | 21 | 10.5470 | 100.0 | 100.6153 | 11588 | 1145 | 1854 | 1145 | 1854 | 3451 | 23.3993 | 6450 | 10 | 12733 | 1158.8 | 114.5 | 185.4 | 2.3399 | 0.0899 | 0.1456 | 0.2710 | 0.5066 |
No log | 22.0 | 22 | 10.5397 | 100.0 | 100.6153 | 11556 | 1177 | 1840 | 1177 | 1840 | 3437 | 23.4060 | 6454 | 10 | 12733 | 1155.6 | 117.7 | 184.0 | 2.3406 | 0.0924 | 0.1445 | 0.2699 | 0.5069 |
No log | 23.0 | 23 | 10.5330 | 100.0 | 100.6153 | 11562 | 1171 | 1834 | 1171 | 1834 | 3442 | 23.4073 | 6447 | 10 | 12733 | 1156.2 | 117.1 | 183.4 | 2.3407 | 0.0920 | 0.1440 | 0.2703 | 0.5063 |
No log | 24.0 | 24 | 10.5265 | 100.0 | 100.6153 | 11583 | 1150 | 1838 | 1150 | 1838 | 3457 | 23.3987 | 6445 | 10 | 12733 | 1158.3 | 115.0 | 183.8 | 2.3399 | 0.0903 | 0.1443 | 0.2715 | 0.5062 |
5.1826 | 25.0 | 25 | 10.5191 | 100.0 | 100.6153 | 11574 | 1159 | 1834 | 1159 | 1834 | 3454 | 23.3993 | 6447 | 10 | 12733 | 1157.4 | 115.9 | 183.4 | 2.3399 | 0.0910 | 0.1440 | 0.2713 | 0.5063 |
5.1826 | 26.0 | 26 | 10.5103 | 100.0 | 100.6153 | 11539 | 1194 | 1826 | 1194 | 1826 | 3428 | 23.4160 | 6448 | 10 | 12733 | 1153.9 | 119.4 | 182.6 | 2.3416 | 0.0938 | 0.1434 | 0.2692 | 0.5064 |
5.1826 | 27.0 | 27 | 10.5003 | 100.0 | 100.6153 | 11466 | 1267 | 1802 | 1267 | 1802 | 3376 | 23.4527 | 6445 | 10 | 12733 | 1146.6 | 126.7 | 180.2 | 2.3453 | 0.0995 | 0.1415 | 0.2651 | 0.5062 |
5.1826 | 28.0 | 28 | 10.4912 | 100.0 | 100.6153 | 11387 | 1346 | 1780 | 1346 | 1780 | 3320 | 23.4893 | 6446 | 10 | 12733 | 1138.7 | 134.6 | 178.0 | 2.3489 | 0.1057 | 0.1398 | 0.2607 | 0.5062 |
5.1826 | 29.0 | 29 | 10.4834 | 100.0 | 100.5742 | 11300 | 1433 | 1754 | 1433 | 1754 | 3253 | 23.5380 | 6440 | 10 | 12733 | 1130.0 | 143.3 | 175.4 | 2.3538 | 0.1125 | 0.1378 | 0.2555 | 0.5058 |
5.1826 | 30.0 | 30 | 10.4772 | 100.0 | 100.5332 | 11248 | 1485 | 1739 | 1485 | 1739 | 3213 | 23.5667 | 6437 | 10 | 12733 | 1124.8 | 148.5 | 173.9 | 2.3567 | 0.1166 | 0.1366 | 0.2523 | 0.5055 |
5.1826 | 31.0 | 31 | 10.4723 | 100.0 | 100.5332 | 11207 | 1526 | 1736 | 1526 | 1736 | 3189 | 23.5733 | 6451 | 10 | 12733 | 1120.7 | 152.6 | 173.6 | 2.3573 | 0.1198 | 0.1363 | 0.2505 | 0.5066 |
5.1826 | 32.0 | 32 | 10.4676 | 100.0 | 100.5332 | 11163 | 1570 | 1724 | 1570 | 1724 | 3157 | 23.5947 | 6451 | 10 | 12733 | 1116.3 | 157.0 | 172.4 | 2.3595 | 0.1233 | 0.1354 | 0.2479 | 0.5066 |
5.1826 | 33.0 | 33 | 10.4632 | 100.0 | 100.5332 | 11134 | 1599 | 1718 | 1599 | 1718 | 3142 | 23.5993 | 6459 | 10 | 12733 | 1113.4 | 159.9 | 171.8 | 2.3599 | 0.1256 | 0.1349 | 0.2468 | 0.5073 |
5.1826 | 34.0 | 34 | 10.4616 | 100.0 | 100.5332 | 11106 | 1627 | 1712 | 1627 | 1712 | 3120 | 23.6140 | 6459 | 10 | 12733 | 1110.6 | 162.7 | 171.2 | 2.3614 | 0.1278 | 0.1345 | 0.2450 | 0.5073 |
5.1826 | 35.0 | 35 | 10.4624 | 100.0 | 100.4922 | 11080 | 1653 | 1704 | 1653 | 1704 | 3104 | 23.6233 | 6461 | 10 | 12733 | 1108.0 | 165.3 | 170.4 | 2.3623 | 0.1298 | 0.1338 | 0.2438 | 0.5074 |
5.1826 | 36.0 | 36 | 10.4619 | 100.0 | 100.4512 | 11047 | 1686 | 1698 | 1686 | 1698 | 3084 | 23.6320 | 6468 | 10 | 12733 | 1104.7 | 168.6 | 169.8 | 2.3632 | 0.1324 | 0.1334 | 0.2422 | 0.5080 |
5.1826 | 37.0 | 37 | 10.4617 | 100.0 | 100.4512 | 11005 | 1728 | 1691 | 1728 | 1691 | 3056 | 23.6460 | 6475 | 10 | 12733 | 1100.5 | 172.8 | 169.1 | 2.3646 | 0.1357 | 0.1328 | 0.2400 | 0.5085 |
5.1826 | 38.0 | 38 | 10.4616 | 100.0 | 100.4512 | 10972 | 1761 | 1684 | 1761 | 1684 | 3032 | 23.6607 | 6477 | 10 | 12733 | 1097.2 | 176.1 | 168.4 | 2.3661 | 0.1383 | 0.1323 | 0.2381 | 0.5087 |
5.1826 | 39.0 | 39 | 10.4629 | 100.0 | 100.4512 | 10955 | 1778 | 1681 | 1778 | 1681 | 3021 | 23.6660 | 6480 | 10 | 12733 | 1095.5 | 177.8 | 168.1 | 2.3666 | 0.1396 | 0.1320 | 0.2373 | 0.5089 |
5.1826 | 40.0 | 40 | 10.4668 | 100.0 | 100.4512 | 10948 | 1785 | 1679 | 1785 | 1679 | 3015 | 23.6707 | 6479 | 10 | 12733 | 1094.8 | 178.5 | 167.9 | 2.3671 | 0.1402 | 0.1319 | 0.2368 | 0.5088 |
5.1826 | 41.0 | 41 | 10.4696 | 100.0 | 100.4512 | 10940 | 1793 | 1679 | 1793 | 1679 | 3009 | 23.6733 | 6481 | 10 | 12733 | 1094.0 | 179.3 | 167.9 | 2.3673 | 0.1408 | 0.1319 | 0.2363 | 0.5090 |
5.1826 | 42.0 | 42 | 10.4722 | 100.0 | 100.4512 | 10928 | 1805 | 1677 | 1805 | 1677 | 3000 | 23.6787 | 6482 | 10 | 12733 | 1092.8 | 180.5 | 167.7 | 2.3679 | 0.1418 | 0.1317 | 0.2356 | 0.5091 |
5.1826 | 43.0 | 43 | 10.4757 | 100.0 | 100.4512 | 10894 | 1839 | 1672 | 1839 | 1672 | 2980 | 23.6860 | 6491 | 10 | 12733 | 1089.4 | 183.9 | 167.2 | 2.3686 | 0.1444 | 0.1313 | 0.2340 | 0.5098 |
5.1826 | 44.0 | 44 | 10.4790 | 100.0 | 100.4922 | 10851 | 1882 | 1663 | 1882 | 1663 | 2951 | 23.7020 | 6496 | 10 | 12733 | 1085.1 | 188.2 | 166.3 | 2.3702 | 0.1478 | 0.1306 | 0.2318 | 0.5102 |
5.1826 | 45.0 | 45 | 10.4821 | 100.0 | 100.4922 | 10840 | 1893 | 1657 | 1893 | 1657 | 2946 | 23.7053 | 6496 | 10 | 12733 | 1084.0 | 189.3 | 165.7 | 2.3705 | 0.1487 | 0.1301 | 0.2314 | 0.5102 |
5.1826 | 46.0 | 46 | 10.4847 | 100.0 | 100.4922 | 10829 | 1904 | 1655 | 1904 | 1655 | 2938 | 23.7100 | 6497 | 10 | 12733 | 1082.9 | 190.4 | 165.5 | 2.3710 | 0.1495 | 0.1300 | 0.2307 | 0.5102 |
5.1826 | 47.0 | 47 | 10.4862 | 100.0 | 100.4922 | 10821 | 1912 | 1655 | 1912 | 1655 | 2932 | 23.7127 | 6499 | 10 | 12733 | 1082.1 | 191.2 | 165.5 | 2.3713 | 0.1502 | 0.1300 | 0.2303 | 0.5104 |
5.1826 | 48.0 | 48 | 10.4865 | 100.0 | 100.4922 | 10813 | 1920 | 1656 | 1920 | 1656 | 2930 | 23.7093 | 6506 | 10 | 12733 | 1081.3 | 192.0 | 165.6 | 2.3709 | 0.1508 | 0.1301 | 0.2301 | 0.5110 |
5.1826 | 49.0 | 49 | 10.4866 | 100.0 | 100.4922 | 10807 | 1926 | 1656 | 1926 | 1656 | 2927 | 23.7093 | 6509 | 10 | 12733 | 1080.7 | 192.6 | 165.6 | 2.3709 | 0.1513 | 0.1301 | 0.2299 | 0.5112 |
4.8334 | 50.0 | 50 | 10.4868 | 100.0 | 100.4922 | 10807 | 1926 | 1656 | 1926 | 1656 | 2927 | 23.7093 | 6509 | 10 | 12733 | 1080.7 | 192.6 | 165.6 | 2.3709 | 0.1513 | 0.1301 | 0.2299 | 0.5112 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.0.0
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 4
Model tree for anakib1/whisper-small-multi-diar-wer
Base model
openai/whisper-small