roberta_finetune_CPS_backtranslation
This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8310
- Accuracy: 0.7430
- F1-micro: 0.7430
- F1-macro: 0.6382
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro |
---|---|---|---|---|---|---|
1.0344 | 1.0 | 777 | 0.9110 | 0.6900 | 0.6900 | 0.5525 |
0.7043 | 2.0 | 1554 | 0.9018 | 0.7022 | 0.7022 | 0.5789 |
0.5204 | 3.0 | 2331 | 0.8736 | 0.7471 | 0.7471 | 0.6195 |
0.4969 | 4.0 | 3108 | 1.0660 | 0.7056 | 0.7056 | 0.5971 |
0.2617 | 5.0 | 3885 | 1.2265 | 0.7199 | 0.7199 | 0.6407 |
0.3464 | 6.0 | 4662 | 1.5513 | 0.7247 | 0.7247 | 0.6296 |
0.2561 | 7.0 | 5439 | 1.6921 | 0.7349 | 0.7349 | 0.6338 |
0.2177 | 8.0 | 6216 | 1.7802 | 0.7254 | 0.7254 | 0.6388 |
0.1287 | 9.0 | 6993 | 1.8120 | 0.7356 | 0.7356 | 0.6316 |
0.0704 | 10.0 | 7770 | 1.8310 | 0.7430 | 0.7430 | 0.6382 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for aminsamadi/roberta_finetune_CPS_backtranslation
Base model
FacebookAI/roberta-base