metadata
license: apache-2.0
datasets:
- eugenesiow/Div2k
- eugenesiow/Set5
language:
- en
tags:
- RyzenAI
- super resolution
- SISR
- pytorch
Model description
SESR is based on linear overparameterization of CNNs and creates an efficient model architecture for SISR. It was introduced in the paper Collapsible Linear Blocks for Super-Efficient Super Resolution. The official code for this work is available at this https://github.com/ARM-software/sesr
We develop a modified version that could be supported by AMD Ryzen AI.
Intended uses & limitations
You can use the raw model for super resolution. See the model hub to look for all available models.
How to use
Installation
Follow Ryzen AI Installation to prepare the environment for Ryzen AI. Run the following script to install pre-requisites for this model.
pip install -r requirements.txt
Data Preparation (optional: for accuracy evaluation)
- Download the benchmark(https://cv.snu.ac.kr/research/EDSR/benchmark.tar) dataset.
- Organize the dataset directory as follows:
βββ dataset
βββ benchmark
βββ Set5
βββ HR
| βββ baby.png
| βββ ...
βββ LR_bicubic
βββX2
βββbabyx2.png
βββ ...
βββ Set14
βββ ...
Test & Evaluation
- Code snippet from
one_image_inference.py
on how to use
parser = argparse.ArgumentParser(description='EDSR and MDSR')
parser.add_argument('--onnx_path', type=str, default='SESR_int8.onnx',
help='onnx path')
parser.add_argument('--image_path', default='test_data/test.png',
help='path of your image')
parser.add_argument('--output_path', default='test_data/sr.png',
help='path of your image')
parser.add_argument('--ipu', action='store_true',
help='use ipu')
parser.add_argument('--provider_config', type=str, default=None,
help='provider config path')
args = parser.parse_args()
if args.ipu:
providers = ["VitisAIExecutionProvider"]
provider_options = [{"config_file": args.provider_config}]
else:
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
provider_options = None
onnx_file_name = args.onnx_path
image_path = args.image_path
output_path = args.output_path
ort_session = onnxruntime.InferenceSession(onnx_file_name, providers=providers, provider_options=provider_options)
lr = cv2.imread(image_path)[np.newaxis,:,:,:].transpose((0,3,1,2)).astype(np.float32)
sr = tiling_inference(ort_session, lr, 8, (56, 56))
sr = np.clip(sr, 0, 255)
sr = sr.squeeze().transpose((1,2,0)).astype(np.uint8)
sr = cv2.imwrite(output_path, sr)
- Run inference for a single image
python one_image_inference.py --onnx_path SESR_int8.onnx --image_path /Path/To/Your/Image --ipu --provider_config Path/To/vaip_config.json
Note: vaip_config.json is located at the setup package of Ryzen AI (refer to Installation)
- Test accuracy of the quantized model
python test.py --onnx_path SESR_int8.onnx --data_test Set5 --ipu --provider_config Path/To/vaip_config.json
Performance
Method | Scale | Flops | Set5 |
---|---|---|---|
SESR-S (float) | X2 | 10.22G | 37.21 |
SESR-S (INT8) | X2 | 10.22G | 36.81 |
- Note: the Flops is calculated with the input resolution is 256x256
@misc{bhardwaj2022collapsible,
title={Collapsible Linear Blocks for Super-Efficient Super Resolution},
author={Kartikeya Bhardwaj and Milos Milosavljevic and Liam O'Neil and Dibakar Gope and Ramon Matas and Alex Chalfin and Naveen Suda and Lingchuan Meng and Danny Loh},
year={2022},
eprint={2103.09404},
archivePrefix={arXiv},
primaryClass={eess.IV}
}