HRNet / README.md
zhengrongzhang's picture
init model
c2ba1ac
---
license: apache-2.0
datasets:
- Chris1/cityscapes
language:
- en
metrics:
- mean_iou
pipeline_tag: image-segmentation
tags:
- Image Segmentation
- Semantic Segmentation
- Computer Vision
- Cityscapes
- HRNet
- ONNX
- Int8 quantization
- RyzenAI
---
# HRNet model trained on Cityscapes
HRNet trained on Cityscapes dataset at resolution 512x1024 for semantic segmentation on images.
It was introduced in the paper [Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation](https://arxiv.org/pdf/1909.11065.pdf) by Yuhui Yuan et al.
The code version we use from [this repository](https://github.com/HRNet/HRNet-Semantic-Segmentation).
We develop a modified version that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com/en/latest/inst.html).
## Model description
HRNet is an advanced algorithm used for image segmentation. It is based on deep learning techniques and is capable of providing accurate semantic segmentation in images.
## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co./models?sort=trending&search=amd%2Fhrnet) to look for all available HRNet models.
## How to use
### Installation
Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI.
Run the following script to install pre-requisites for this model.
```bash
pip install -r requirements.txt
```
### Data Preparation (optional: for accuracy evaluation)
1. Download the [Cityscapes](https://www.cityscapes-dataset.com/) dataset, which includes images and annotations. Download gtFine_trainvaltest.zip (241MB) and leftImg8bit_trainvaltest.zip (11GB).
2. Organise the dataset directory as follows:
```Shell
./data/cityscapes/
gtFine
leftImg8bit
train.lst
val.lst
test.lst
```
### Test & Evaluation
- Run inference on a single image
```python
python hrnet_quantized_onnx_inference.py -m HighResolutionNet_int.onnx -idir PATH_TO_IMAGES(like .\data\cityscapes\leftImg8bit\val\frankfurt) --ipu --provider_config Path\To\vaip_config.json
#return segmentaion logits and can visualize the result.
```
*Note: __vaip_config.json__ is located at the setup package of Ryzen AI (refer to [Installation](#installation))*
- Test accuracy of the quantized model on Cityscapes.
```Shell
python hrnet_quantized_onnx_eval.py -m .\HighResolutionNet_int.onnx -r .\data\cityscapes -l .\val.lst --ipu --provider_config .\vaip_config.json
```
### Performance
| Model | miou|
|:-|:-:|
| HRNet_int8_onnx_model (512x1024) | 72.31% |
```bibtex
@article{YuanCW19,
title={Object-Contextual Representations for Semantic Segmentation},
author={Yuhui Yuan and Xilin Chen and Jingdong Wang},
booktitle={ECCV},
year={2020}
}
```