Edit model card

WIP

DONT USE THIS, ITS SHIT

Usage:

import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

model_name = "microsoft/phi-1_5"
adapters_name = 'aloobun/phi_mini_math23k_v1'

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    load_in_4bit=True,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type='nf4'
    ),
)
model = PeftModel.from_pretrained(model, adapters_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "What is the largest two-digit integer whose digits are distinct and form a geometric sequence?"
formatted_prompt = (
    f"### Instruction: {prompt} ### Response:"
)
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda:0")
outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=1048)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: float16

Framework versions

  • PEFT 0.5.0
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train aloobun/phi_mini_math23k_v1