|
from configuration import DatasetName, DatasetType, \ |
|
AffectnetConf, D300wConf, W300Conf, InputDataSize, LearningConfig, CofwConf, WflwConf |
|
from tf_record_utility import TFRecordUtility |
|
from clr_callback import CyclicLR |
|
from cnn_model import CNNModel |
|
from custom_Losses import Custom_losses |
|
from Data_custom_generator import CustomHeatmapGenerator |
|
from PW_Data_custom_generator import PWCustomHeatmapGenerator |
|
from image_utility import ImageUtility |
|
import img_printer as imgpr |
|
|
|
import tensorflow as tf |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import math |
|
from datetime import datetime |
|
from sklearn.utils import shuffle |
|
from sklearn.model_selection import train_test_split |
|
from numpy import save, load, asarray |
|
import csv |
|
from skimage.io import imread |
|
import pickle |
|
|
|
|
|
|
|
|
|
|
|
class TeacherTrainer: |
|
|
|
def __init__(self, dataset_name, use_augmneted): |
|
self.dataset_name = dataset_name |
|
|
|
if dataset_name == DatasetName.w300: |
|
self.num_landmark = D300wConf.num_of_landmarks * 2 |
|
if use_augmneted: |
|
self.img_path = D300wConf.augmented_train_image |
|
self.annotation_path = D300wConf.augmented_train_annotation |
|
else: |
|
self.img_path = D300wConf.no_aug_train_image |
|
self.annotation_path = D300wConf.no_aug_train_annotation |
|
|
|
if dataset_name == DatasetName.cofw: |
|
self.num_landmark = CofwConf.num_of_landmarks * 2 |
|
self.img_path = CofwConf.augmented_train_image |
|
self.annotation_path = CofwConf.augmented_train_annotation |
|
|
|
if dataset_name == DatasetName.wflw: |
|
self.num_landmark = WflwConf.num_of_landmarks * 2 |
|
if use_augmneted: |
|
self.img_path = WflwConf.augmented_train_image |
|
self.annotation_path = WflwConf.augmented_train_annotation |
|
else: |
|
self.img_path = WflwConf.no_aug_train_image |
|
self.annotation_path = WflwConf.no_aug_train_annotation |
|
|
|
def train(self, arch, weight_path): |
|
"""""" |
|
'''create loss''' |
|
c_loss = Custom_losses() |
|
|
|
'''create summary writer''' |
|
summary_writer = tf.summary.create_file_writer( |
|
"./train_logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S")) |
|
|
|
'''making models''' |
|
model = self.make_model(arch=arch, w_path=weight_path, is_old=False) |
|
|
|
'''create optimizer''' |
|
_lr = 1e-3 |
|
optimizer_student = self._get_optimizer(lr=_lr) |
|
|
|
'''create sample generator''' |
|
x_train_filenames, x_val_filenames, y_train_filenames, y_val_filenames = self._create_generators() |
|
|
|
'''create train configuration''' |
|
step_per_epoch = len(x_train_filenames) // LearningConfig.batch_size |
|
|
|
'''start train:''' |
|
for epoch in range(LearningConfig.epochs): |
|
x_train_filenames, y_train_filenames = self._shuffle_data(x_train_filenames, y_train_filenames) |
|
for batch_index in range(step_per_epoch): |
|
'''load annotation and images''' |
|
images, annotation_gr = self._get_batch_sample( |
|
batch_index=batch_index, x_train_filenames=x_train_filenames, |
|
y_train_filenames=y_train_filenames, model=model) |
|
'''convert to tensor''' |
|
images = tf.cast(images, tf.float32) |
|
annotation_gr = tf.cast(annotation_gr, tf.float32) |
|
|
|
'''train step''' |
|
self.train_step(epoch=epoch, step=batch_index, total_steps=step_per_epoch, images=images, |
|
model=model, |
|
annotation_gr=annotation_gr, |
|
optimizer=optimizer_student, |
|
summary_writer=summary_writer, c_loss=c_loss) |
|
'''evaluating part''' |
|
img_batch_eval, pn_batch_eval = self._create_evaluation_batch(x_val_filenames, y_val_filenames) |
|
|
|
loss_eval = self._eval_model(img_batch_eval, pn_batch_eval, model) |
|
with summary_writer.as_default(): |
|
tf.summary.scalar('Eval-LOSS', loss_eval, step=epoch) |
|
'''save weights''' |
|
model.save( |
|
'./models/teacher_model_' + str(epoch) + '_' + self.dataset_name + '_' + str(loss_eval) + '.h5') |
|
|
|
|
|
def train_step(self, epoch, step, total_steps, images, |
|
model, annotation_gr, |
|
optimizer, summary_writer, c_loss): |
|
with tf.GradientTape() as tape: |
|
'''create annotation_predicted''' |
|
annotation_predicted = model(images, training=True) |
|
'''calculate loss''' |
|
loss = c_loss.MSE(x_pr=annotation_predicted, x_gt=annotation_gr) |
|
'''calculate gradient''' |
|
gradients = tape.gradient(loss, model.trainable_variables) |
|
'''apply Gradients:''' |
|
optimizer.apply_gradients(zip(gradients, model.trainable_variables)) |
|
'''printing loss Values: ''' |
|
tf.print("->EPOCH: ", str(epoch), "->STEP: ", str(step) + '/' + str(total_steps), ' -> : LOSS: ', loss) |
|
with summary_writer.as_default(): |
|
tf.summary.scalar('LOSS', loss, step=epoch) |
|
|
|
def make_model(self, arch, w_path, is_old=False): |
|
cnn = CNNModel() |
|
model = cnn.get_model(arch=arch, output_len=self.num_landmark, input_tensor=None, weight_path=w_path, |
|
is_old=is_old) |
|
if w_path is not None and arch != 'mobileNetV2_d' and not is_old: |
|
model.load_weights(w_path) |
|
return model |
|
|
|
def _eval_model(self, img_batch_eval, pn_batch_eval, model): |
|
|
|
annotation_predicted = model(img_batch_eval) |
|
loss_eval = np.array(tf.reduce_mean(tf.abs(pn_batch_eval - annotation_predicted))) |
|
|
|
|
|
|
|
|
|
|
|
return loss_eval |
|
|
|
def _get_optimizer(self, lr=1e-2, beta_1=0.9, beta_2=0.999, decay=1e-4): |
|
return tf.keras.optimizers.Adam(lr=lr, beta_1=beta_1, beta_2=beta_2, decay=decay) |
|
|
|
def _shuffle_data(self, filenames, labels): |
|
filenames_shuffled, y_labels_shuffled = shuffle(filenames, labels) |
|
return filenames_shuffled, y_labels_shuffled |
|
|
|
def _create_generators(self): |
|
fn_prefix = './file_names/' + self.dataset_name + '_' |
|
|
|
|
|
|
|
tf_utils = TFRecordUtility(number_of_landmark=self.num_landmark) |
|
|
|
filenames, labels = tf_utils.create_image_and_labels_name(img_path=self.img_path, |
|
annotation_path=self.annotation_path) |
|
filenames_shuffled, y_labels_shuffled = shuffle(filenames, labels) |
|
x_train_filenames, x_val_filenames, y_train, y_val = train_test_split( |
|
filenames_shuffled, y_labels_shuffled, test_size=LearningConfig.batch_size, random_state=1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return x_train_filenames, x_val_filenames, y_train, y_val |
|
|
|
def _create_evaluation_batch(self, x_eval_filenames, y_eval_filenames): |
|
img_path = self.img_path |
|
pn_tr_path = self.annotation_path |
|
'''create batch data and normalize images''' |
|
batch_x = x_eval_filenames[0:LearningConfig.batch_size] |
|
batch_y = y_eval_filenames[0:LearningConfig.batch_size] |
|
'''create img and annotations''' |
|
img_batch = np.array([imread(img_path + file_name) for file_name in batch_x]) / 255.0 |
|
if self.dataset_name == DatasetName.cofw: |
|
pn_batch = np.array([load(pn_tr_path + file_name) for file_name in batch_y]) |
|
else: |
|
pn_batch = np.array([self._load_and_normalize(pn_tr_path + file_name) for file_name in batch_y]) |
|
return img_batch, pn_batch |
|
|
|
def _get_batch_sample(self, batch_index, x_train_filenames, y_train_filenames): |
|
img_path = self.img_path |
|
pn_tr_path = self.annotation_path |
|
'''create batch data and normalize images''' |
|
batch_x = x_train_filenames[ |
|
batch_index * LearningConfig.batch_size:(batch_index + 1) * LearningConfig.batch_size] |
|
batch_y = y_train_filenames[ |
|
batch_index * LearningConfig.batch_size:(batch_index + 1) * LearningConfig.batch_size] |
|
img_batch = np.array([imread(img_path + file_name) for file_name in batch_x]) / 255.0 |
|
pn_batch = np.array([self._load_and_normalize(pn_tr_path + file_name) for file_name in batch_y]) |
|
|
|
return img_batch, pn_batch |
|
|
|
def _load_and_normalize(self, point_path): |
|
annotation = load(point_path) |
|
|
|
"""for training we dont normalize COFW""" |
|
|
|
'''normalize landmarks based on hyperface method''' |
|
width = InputDataSize.image_input_size |
|
height = InputDataSize.image_input_size |
|
x_center = width / 2 |
|
y_center = height / 2 |
|
annotation_norm = [] |
|
for p in range(0, len(annotation), 2): |
|
annotation_norm.append((x_center - annotation[p]) / width) |
|
annotation_norm.append((y_center - annotation[p + 1]) / height) |
|
return annotation_norm |
|
|