Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: beomi/polyglot-ko-12.8b-safetensors
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d91a41ca6b44ffff_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d91a41ca6b44ffff_train_data.json
  type:
    field_instruction: prompt
    field_output: chosen
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 2
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: aleegis12/3ee9f7bb-abd2-40ce-bf06-792a5f44f0fa
hub_private_repo: false
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 3000
micro_batch_size: 4
mlflow_experiment_name: /tmp/d91a41ca6b44ffff_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
private_repo: false
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 77b73d30-81f1-491a-b9e3-e751f2833241
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 77b73d30-81f1-491a-b9e3-e751f2833241
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

3ee9f7bb-abd2-40ce-bf06-792a5f44f0fa

This model is a fine-tuned version of beomi/polyglot-ko-12.8b-safetensors on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6903

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1585

Training results

Training Loss Epoch Step Validation Loss
No log 0.0063 1 1.5035
3.0493 0.9464 150 0.7384
2.3597 1.8927 300 0.6619
1.7147 2.8391 450 0.6623
1.179 3.7855 600 0.6903

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for aleegis12/3ee9f7bb-abd2-40ce-bf06-792a5f44f0fa

Adapter
(317)
this model