Training procedure
This is a fine-tuned model of base model "dbmdz/bert-base-turkish-cased" using the Parameter Efficient Fine Tuning (PEFT) with Low-Rank Adaptation (LoRA) technique using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
trainable params: 702,734 || all params: 110,627,342 || trainable%: 0.6352263258752072
Fine-tuning parameters:
task = "ner"
model_checkpoint = "dbmdz/bert-base-turkish-cased"
batch_size = 16
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 1e-3
num_train_epochs = 7
weight_decay = 0.01
PEFT Parameters
inference_mode=False
r=16
lora_alpha=16
lora_dropout=0.1
bias="all"
How to use:
peft_model_id = "akdeniz27/bert-base-turkish-cased-ner-lora"
config = PeftConfig.from_pretrained(peft_model_id)
inference_model = AutoModelForTokenClassification.from_pretrained(
config.base_model_name_or_path, num_labels=7, id2label=id2label, label2id=label2id
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(inference_model, peft_model_id)
text = "Mustafa Kemal Atatürk 1919 yılında Samsun'a çıktı."
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
tokens = inputs.tokens()
predictions = torch.argmax(logits, dim=2)
for token, prediction in zip(tokens, predictions[0].numpy()):
print((token, model.config.id2label[prediction]))
Reference test results:
- accuracy: 0.993297
- f1: 0.949696
- precision: 0.942554
- recall: 0.956946
- Downloads last month
- 2
Inference API (serverless) does not yet support peft models for this pipeline type.
Model tree for akdeniz27/bert-base-turkish-cased-ner-lora
Base model
dbmdz/bert-base-turkish-cased