Mistral
Collection
Mistral models finetuned to improve performance in terms of code generation https://github.com/akameswa/CodeGenerationMoE
•
15 items
•
Updated
mistral-7b-instruct-code-ties is a merge of the following models using mergekit:
models:
- model: akameswa/mistral-7b-instruct-v0.2-bnb-16bit
- model: akameswa/mistral-7b-instruct-javascript-16bit
parameters:
density: 0.85
weight: 0.25
- model: akameswa/mistral-7b-instruct-python-16bit
parameters:
density: 0.85
weight: 0.25
- model: akameswa/mistral-7b-instruct-java-16bit
parameters:
density: 0.85
weight: 0.25
- model: akameswa/mistral-7b-instruct-javascript-16bit
parameters:
density: 0.85
weight: 0.25
merge_method: ties
base_model: akameswa/mistral-7b-instruct-v0.2-bnb-16bit
parameters:
normalize: true
dtype: float16
from unsloth import FastLanguageModel
import torch
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "akameswa/mistral-7b-instruct-code-ties",
max_seq_length = 2048,
)
xlcost_prompt = """Below is a description of a programming task. Write a response that appropriately completes the task based on the given description.
### Description:
{}
### Code:
{}"""
FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
xlcost_prompt.format(
"Continue the fibonnaci sequence.",
"",
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)