BERTimbau Large Finance ("bert-large-portuguese-cased-finance")

image/png

Introduction

BERTimbau Finance Large is a model fine-tuned using two major Brazilian banking datasets, placing it within the finance domain.

It was developed by fine-tuning the BERTimbau Large language model.

BERTimbau Finance Large is available in multiple formats: Pytorch, Safetensors, Tensorflow 2, Tensorflow 1 checkpoints, ONNX.

BERTimbau Large is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large.

For further information, please direct to BERTimbau repository.

Available models

Model Arch. #Layers #Params
ai-agi/bert-large-portuguese-cased-finance BERT-Large 24 335M

Usage

from transformers import AutoTokenizer  # Or BertTokenizer
from transformers import AutoModelForPreTraining  # Or BertForPreTraining for loading pretraining heads
from transformers import AutoModel  # or BertModel, for BERT without pretraining heads

model = AutoModelForPreTraining.from_pretrained('ai-agi/bert-large-portuguese-cased-finance')
tokenizer = AutoTokenizer.from_pretrained('ai-agi/bert-large-portuguese-cased-finance', do_lower_case=False)

Masked language modeling prediction example

from transformers import pipeline

pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer)

pipe('Tinha uma [MASK] no meio do caminho.')
# [{'score': 0.5054386258125305,
#   'sequence': '[CLS] Tinha uma pedra no meio do caminho. [SEP]',
#   'token': 5028,
#   'token_str': 'pedra'},
#  {'score': 0.05616172030568123,
#   'sequence': '[CLS] Tinha uma curva no meio do caminho. [SEP]',
#   'token': 9562,
#   'token_str': 'curva'},
#  {'score': 0.02348282001912594,
#   'sequence': '[CLS] Tinha uma parada no meio do caminho. [SEP]',
#   'token': 6655,
#   'token_str': 'parada'},
#  {'score': 0.01795753836631775,
#   'sequence': '[CLS] Tinha uma mulher no meio do caminho. [SEP]',
#   'token': 2606,
#   'token_str': 'mulher'},
#  {'score': 0.015246033668518066,
#   'sequence': '[CLS] Tinha uma luz no meio do caminho. [SEP]',
#   'token': 3377,
#   'token_str': 'luz'}]

For BERT embeddings


import torch

model = AutoModel.from_pretrained('ai-agi/bert-large-portuguese-cased-finance')
input_ids = tokenizer.encode('Tinha uma pedra no meio do caminho.', return_tensors='pt')

with torch.no_grad():
    outs = model(input_ids)
    encoded = outs[0][0, 1:-1]  # Ignore [CLS] and [SEP] special tokens

# encoded.shape: (8, 1024)
# tensor([[ 1.1872,  0.5606, -0.2264,  ...,  0.0117, -0.1618, -0.2286],
#         [ 1.3562,  0.1026,  0.1732,  ..., -0.3855, -0.0832, -0.1052],
#         [ 0.2988,  0.2528,  0.4431,  ...,  0.2684, -0.5584,  0.6524],
#         ...,
#         [ 0.3405, -0.0140, -0.0748,  ...,  0.6649, -0.8983,  0.5802],
#         [ 0.1011,  0.8782,  0.1545,  ..., -0.1768, -0.8880, -0.1095],
#         [ 0.7912,  0.9637, -0.3859,  ...,  0.2050, -0.1350,  0.0432]])
Downloads last month
12
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.