|
--- |
|
base_model: amazingvince/zephyr-smol_llama-100m-dpo-full |
|
inference: false |
|
license: apache-2.0 |
|
model-index: |
|
- name: zephyr-smol_llama-100m-dpo-full |
|
results: [] |
|
model_creator: amazingvince |
|
model_name: zephyr-smol_llama-100m-dpo-full |
|
pipeline_tag: text-generation |
|
quantized_by: afrideva |
|
tags: |
|
- generated_from_trainer |
|
- gguf |
|
- ggml |
|
- quantized |
|
- q2_k |
|
- q3_k_m |
|
- q4_k_m |
|
- q5_k_m |
|
- q6_k |
|
- q8_0 |
|
--- |
|
# amazingvince/zephyr-smol_llama-100m-dpo-full-GGUF |
|
|
|
Quantized GGUF model files for [zephyr-smol_llama-100m-dpo-full](https://huggingface.co./amazingvince/zephyr-smol_llama-100m-dpo-full) from [amazingvince](https://huggingface.co./amazingvince) |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [zephyr-smol_llama-100m-dpo-full.fp16.gguf](https://huggingface.co./afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.fp16.gguf) | fp16 | 204.25 MB | |
|
| [zephyr-smol_llama-100m-dpo-full.q2_k.gguf](https://huggingface.co./afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.q2_k.gguf) | q2_k | 51.90 MB | |
|
| [zephyr-smol_llama-100m-dpo-full.q3_k_m.gguf](https://huggingface.co./afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.q3_k_m.gguf) | q3_k_m | 58.04 MB | |
|
| [zephyr-smol_llama-100m-dpo-full.q4_k_m.gguf](https://huggingface.co./afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.q4_k_m.gguf) | q4_k_m | 66.38 MB | |
|
| [zephyr-smol_llama-100m-dpo-full.q5_k_m.gguf](https://huggingface.co./afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.q5_k_m.gguf) | q5_k_m | 75.31 MB | |
|
| [zephyr-smol_llama-100m-dpo-full.q6_k.gguf](https://huggingface.co./afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.q6_k.gguf) | q6_k | 84.80 MB | |
|
| [zephyr-smol_llama-100m-dpo-full.q8_0.gguf](https://huggingface.co./afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.q8_0.gguf) | q8_0 | 109.33 MB | |
|
|
|
|
|
|
|
## Original Model Card: |
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# zephyr-smol_llama-100m-dpo-full |
|
|
|
This model is a fine-tuned version of [amazingvince/zephyr-smol_llama-100m-sft-full](https://huggingface.co./amazingvince/zephyr-smol_llama-100m-sft-full) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5465 |
|
- Rewards/chosen: -0.0518 |
|
- Rewards/rejected: -0.7661 |
|
- Rewards/accuracies: 0.7170 |
|
- Rewards/margins: 0.7143 |
|
- Logps/rejected: -450.2018 |
|
- Logps/chosen: -588.7877 |
|
- Logits/rejected: -4.9602 |
|
- Logits/chosen: -5.2468 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-07 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.6549 | 0.26 | 1000 | 0.6037 | -0.1205 | -0.4850 | 0.6550 | 0.3644 | -447.3903 | -589.4750 | -4.7410 | -5.0341 | |
|
| 0.5349 | 0.52 | 2000 | 0.5779 | -0.0126 | -0.5080 | 0.6770 | 0.4955 | -447.6208 | -588.3951 | -4.8645 | -5.1463 | |
|
| 0.6029 | 0.77 | 3000 | 0.5657 | 0.0902 | -0.4636 | 0.6900 | 0.5538 | -447.1767 | -587.3674 | -5.0016 | -5.2911 | |
|
| 0.5273 | 1.03 | 4000 | 0.5596 | 0.0496 | -0.5449 | 0.7040 | 0.5944 | -447.9891 | -587.7738 | -4.9972 | -5.2892 | |
|
| 0.5 | 1.29 | 5000 | 0.5557 | 0.0585 | -0.6110 | 0.7050 | 0.6695 | -448.6505 | -587.6843 | -5.0108 | -5.3047 | |
|
| 0.5056 | 1.55 | 6000 | 0.5499 | 0.0054 | -0.6719 | 0.7130 | 0.6773 | -449.2598 | -588.2154 | -4.9988 | -5.2907 | |
|
| 0.4608 | 1.81 | 7000 | 0.5500 | -0.0376 | -0.7494 | 0.7030 | 0.7118 | -450.0341 | -588.6455 | -5.0549 | -5.3406 | |
|
| 0.426 | 2.07 | 8000 | 0.5472 | -0.0106 | -0.7021 | 0.7100 | 0.6916 | -449.5617 | -588.3751 | -4.9750 | -5.2626 | |
|
| 0.3875 | 2.32 | 9000 | 0.5464 | -0.0011 | -0.7171 | 0.7140 | 0.7159 | -449.7113 | -588.2810 | -4.9935 | -5.2796 | |
|
| 0.397 | 2.58 | 10000 | 0.5462 | -0.0391 | -0.7566 | 0.7190 | 0.7175 | -450.1064 | -588.6602 | -4.9737 | -5.2618 | |
|
| 0.4486 | 2.84 | 11000 | 0.5459 | -0.0493 | -0.7667 | 0.7110 | 0.7174 | -450.2074 | -588.7629 | -4.9569 | -5.2441 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |