ce-lery/japanese-mistral-300m-base-GGUF
Quantized GGUF model files for japanese-mistral-300m-base from ce-lery
Name | Quant method | Size |
---|---|---|
japanese-mistral-300m-base.fp16.gguf | fp16 | 712.33 MB |
japanese-mistral-300m-base.q2_k.gguf | q2_k | 176.84 MB |
japanese-mistral-300m-base.q3_k_m.gguf | q3_k_m | 195.04 MB |
japanese-mistral-300m-base.q4_k_m.gguf | q4_k_m | 234.80 MB |
japanese-mistral-300m-base.q5_k_m.gguf | q5_k_m | 266.47 MB |
japanese-mistral-300m-base.q6_k.gguf | q6_k | 307.38 MB |
japanese-mistral-300m-base.q8_0.gguf | q8_0 | 379.17 MB |
Original Model Card:
japanese-mistral-300m-base
Overview
Welcome to my model card!
This Model feature is ...
- Suppression of unknown word generation by using byte fallback in SentencePiece tokenizer and conversion to huggingface Tokenizers format
- Pretrained by wikipedia dataset and cc100 dataset
- Use of Mistral 300M
Yukkuri shite ittene!
How to use the model
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import torch
MODEL_NAME = "ce-lery/japanese-mistral-300m-base"
torch.set_float32_matmul_precision('high')
DEVICE = "cuda"
if torch.cuda.is_available():
print("cuda")
DEVICE = "cuda"
else:
print("cpu")
DEVICE = "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
).to(DEVICE)
# streamer = TextStreamer(tokenizer)
prompt = "大規模言語モデルとは、"
inputs = tokenizer(prompt, add_special_tokens=False,return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs["input_ids"],
max_new_tokens=256,
do_sample=True,
early_stopping=False,
top_p=0.95,
top_k=50,
temperature=0.9,
# streamer=streamer,
no_repeat_ngram_size=2,
num_beams=3
)
print(outputs.tolist()[0])
outputs_txt = tokenizer.decode(outputs[0])
print(outputs_txt)
Receipe
If you want to restruct this model, you can refer this Github repository.
I wrote the receipe for struction this model. For example,
- Preprocess with sentencepiece
- Pretraining with flash attention2 and torch.compile and DeepSpeed
- Fine-tuning with databricks-dolly-15k-ja
If you find my mistake,error,...etc, please create issue. If you create pulreqest, I'm very happy!
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.95) and epsilon=0.0001
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.2911 | 0.12 | 5000 | 4.2914 |
3.9709 | 0.24 | 10000 | 3.9900 |
3.8229 | 0.36 | 15000 | 3.8388 |
3.7197 | 0.47 | 20000 | 3.7454 |
3.652 | 0.59 | 25000 | 3.6739 |
3.597 | 0.71 | 30000 | 3.6177 |
3.5554 | 0.83 | 35000 | 3.5770 |
3.536 | 0.95 | 40000 | 3.5582 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 105
Model tree for afrideva/japanese-mistral-300m-base-GGUF
Base model
ce-lery/japanese-mistral-300m-base