|
--- |
|
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T |
|
datasets: |
|
- cerebras/SlimPajama-627B |
|
- bigcode/starcoderdata |
|
inference: false |
|
language: |
|
- en |
|
license: apache-2.0 |
|
model_creator: TinyLlama |
|
model_name: TinyLlama-1.1B-intermediate-step-955k-token-2T |
|
pipeline_tag: text-generation |
|
quantized_by: afrideva |
|
tags: |
|
- gguf |
|
- ggml |
|
- quantized |
|
- q2_k |
|
- q3_k_m |
|
- q4_k_m |
|
- q5_k_m |
|
- q6_k |
|
- q8_0 |
|
--- |
|
# TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T-GGUF |
|
|
|
Quantized GGUF model files for [TinyLlama-1.1B-intermediate-step-955k-token-2T](https://huggingface.co./TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T) from [TinyLlama](https://huggingface.co./TinyLlama) |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [tinyllama-1.1b-intermediate-step-955k-token-2t.q2_k.gguf](https://huggingface.co./afrideva/TinyLlama-1.1B-intermediate-step-955k-token-2T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-955k-token-2t.q2_k.gguf) | q2_k | 482.14 MB | |
|
| [tinyllama-1.1b-intermediate-step-955k-token-2t.q3_k_m.gguf](https://huggingface.co./afrideva/TinyLlama-1.1B-intermediate-step-955k-token-2T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-955k-token-2t.q3_k_m.gguf) | q3_k_m | 549.85 MB | |
|
| [tinyllama-1.1b-intermediate-step-955k-token-2t.q4_k_m.gguf](https://huggingface.co./afrideva/TinyLlama-1.1B-intermediate-step-955k-token-2T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-955k-token-2t.q4_k_m.gguf) | q4_k_m | 667.81 MB | |
|
| [tinyllama-1.1b-intermediate-step-955k-token-2t.q5_k_m.gguf](https://huggingface.co./afrideva/TinyLlama-1.1B-intermediate-step-955k-token-2T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-955k-token-2t.q5_k_m.gguf) | q5_k_m | 782.04 MB | |
|
| [tinyllama-1.1b-intermediate-step-955k-token-2t.q6_k.gguf](https://huggingface.co./afrideva/TinyLlama-1.1B-intermediate-step-955k-token-2T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-955k-token-2t.q6_k.gguf) | q6_k | 903.41 MB | |
|
| [tinyllama-1.1b-intermediate-step-955k-token-2t.q8_0.gguf](https://huggingface.co./afrideva/TinyLlama-1.1B-intermediate-step-955k-token-2T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-955k-token-2t.q8_0.gguf) | q8_0 | 1.17 GB | |
|
|
|
|
|
|
|
## Original Model Card: |
|
<div align="center"> |
|
|
|
# TinyLlama-1.1B |
|
</div> |
|
|
|
https://github.com/jzhang38/TinyLlama |
|
|
|
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ππ. The training has started on 2023-09-01. |
|
|
|
<div align="center"> |
|
<img src="./TinyLlama_logo.png" width="300"/> |
|
</div> |
|
|
|
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. |
|
|
|
#### This Model |
|
This is an intermediate checkpoint with 995K steps and 2003B tokens. |
|
|
|
#### Releases Schedule |
|
We will be rolling out intermediate checkpoints following the below schedule. We also include some baseline models for comparison. |
|
|
|
| Date | HF Checkpoint | Tokens | Step | HellaSwag Acc_norm | |
|
|------------|-------------------------------------------------|--------|------|---------------------| |
|
| Baseline | [StableLM-Alpha-3B](https://huggingface.co./stabilityai/stablelm-base-alpha-3b)| 800B | -- | 38.31 | |
|
| Baseline | [Pythia-1B-intermediate-step-50k-105b](https://huggingface.co./EleutherAI/pythia-1b/tree/step50000) | 105B | 50k | 42.04 | |
|
| Baseline | [Pythia-1B](https://huggingface.co./EleutherAI/pythia-1b) | 300B | 143k | 47.16 | |
|
| 2023-09-04 | [TinyLlama-1.1B-intermediate-step-50k-105b](https://huggingface.co./PY007/TinyLlama-1.1B-step-50K-105b) | 105B | 50k | 43.50 | |
|
| 2023-09-16 | -- | 500B | -- | -- | |
|
| 2023-10-01 | -- | 1T | -- | -- | |
|
| 2023-10-16 | -- | 1.5T | -- | -- | |
|
| 2023-10-31 | -- | 2T | -- | -- | |
|
| 2023-11-15 | -- | 2.5T | -- | -- | |
|
| 2023-12-01 | -- | 3T | -- | -- | |
|
|
|
#### How to use |
|
You will need the transformers>=4.31 |
|
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. |
|
``` |
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
model = "TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T" |
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
sequences = pipeline( |
|
'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ππ. The training has started on 2023-09-01.', |
|
do_sample=True, |
|
top_k=10, |
|
num_return_sequences=1, |
|
repetition_penalty=1.5, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_length=500, |
|
) |
|
for seq in sequences: |
|
print(f"Result: {seq['generated_text']}") |
|
``` |