|
--- |
|
base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.5 |
|
datasets: |
|
- cerebras/SlimPajama-627B |
|
- bigcode/starcoderdata |
|
- OpenAssistant/oasst_top1_2023-08-25 |
|
inference: false |
|
language: |
|
- en |
|
license: apache-2.0 |
|
model_creator: TinyLlama |
|
model_name: TinyLlama-1.1B-Chat-v0.5 |
|
pipeline_tag: text-generation |
|
quantized_by: afrideva |
|
tags: |
|
- gguf |
|
- ggml |
|
- quantized |
|
- q2_k |
|
- q3_k_m |
|
- q4_k_m |
|
- q5_k_m |
|
- q6_k |
|
- q8_0 |
|
--- |
|
# TinyLlama/TinyLlama-1.1B-Chat-v0.5-GGUF |
|
|
|
Quantized GGUF model files for [TinyLlama-1.1B-Chat-v0.5](https://huggingface.co./TinyLlama/TinyLlama-1.1B-Chat-v0.5) from [TinyLlama](https://huggingface.co./TinyLlama) |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [tinyllama-1.1b-chat-v0.5.q2_k.gguf](https://huggingface.co./afrideva/TinyLlama-1.1B-Chat-v0.5-GGUF/resolve/main/tinyllama-1.1b-chat-v0.5.q2_k.gguf) | q2_k | 482.15 MB | |
|
| [tinyllama-1.1b-chat-v0.5.q3_k_m.gguf](https://huggingface.co./afrideva/TinyLlama-1.1B-Chat-v0.5-GGUF/resolve/main/tinyllama-1.1b-chat-v0.5.q3_k_m.gguf) | q3_k_m | 549.85 MB | |
|
| [tinyllama-1.1b-chat-v0.5.q4_k_m.gguf](https://huggingface.co./afrideva/TinyLlama-1.1B-Chat-v0.5-GGUF/resolve/main/tinyllama-1.1b-chat-v0.5.q4_k_m.gguf) | q4_k_m | 667.82 MB | |
|
| [tinyllama-1.1b-chat-v0.5.q5_k_m.gguf](https://huggingface.co./afrideva/TinyLlama-1.1B-Chat-v0.5-GGUF/resolve/main/tinyllama-1.1b-chat-v0.5.q5_k_m.gguf) | q5_k_m | 782.05 MB | |
|
| [tinyllama-1.1b-chat-v0.5.q6_k.gguf](https://huggingface.co./afrideva/TinyLlama-1.1B-Chat-v0.5-GGUF/resolve/main/tinyllama-1.1b-chat-v0.5.q6_k.gguf) | q6_k | 903.42 MB | |
|
| [tinyllama-1.1b-chat-v0.5.q8_0.gguf](https://huggingface.co./afrideva/TinyLlama-1.1B-Chat-v0.5-GGUF/resolve/main/tinyllama-1.1b-chat-v0.5.q8_0.gguf) | q8_0 | 1.17 GB | |
|
|
|
|
|
|
|
## Original Model Card: |
|
<div align="center"> |
|
|
|
# TinyLlama-1.1B |
|
</div> |
|
|
|
https://github.com/jzhang38/TinyLlama |
|
|
|
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ππ. The training has started on 2023-09-01. |
|
|
|
|
|
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. |
|
|
|
#### This Model |
|
This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-955k-2T](https://huggingface.co./TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T). |
|
The dataset used is [OpenAssistant/oasst_top1_2023-08-25](https://huggingface.co./datasets/OpenAssistant/oasst_top1_2023-08-25) following the [chatml](https://github.com/openai/openai-python/blob/main/chatml.md) format. |
|
#### How to use |
|
You will need the transformers>=4.31 |
|
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. |
|
``` |
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
model = "PY007/TinyLlama-1.1B-Chat-v0.5" |
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
CHAT_EOS_TOKEN_ID = 32002 |
|
|
|
prompt = "How to get in a good university?" |
|
formatted_prompt = ( |
|
f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" |
|
) |
|
|
|
|
|
sequences = pipeline( |
|
formatted_prompt, |
|
do_sample=True, |
|
top_k=50, |
|
top_p = 0.9, |
|
num_return_sequences=1, |
|
repetition_penalty=1.1, |
|
max_new_tokens=1024, |
|
eos_token_id=CHAT_EOS_TOKEN_ID, |
|
) |
|
|
|
for seq in sequences: |
|
print(f"Result: {seq['generated_text']}") |
|
``` |