|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- law |
|
- australia |
|
- legal |
|
- auslaw |
|
license: apache-2.0 |
|
datasets: |
|
- umarbutler/open-australian-legal-corpus |
|
language: |
|
- en |
|
--- |
|
|
|
# AusLaw Embedding Model v1.0 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
This model is a fine-tune of [BAAI/bge-small-en](https://huggingface.co./BAAI/bge-small-en) using the HCA case law in the [Open Australian Legal Corpus](https://huggingface.co./datasets/umarbutler/open-australian-legal-corpus) by Umar Butler. The PDF/OCR cases were not used. |
|
|
|
The cases were split into < 512 context chunks using the bge-small-en tokeniser and [semchunk](https://github.com/umarbutler/semchunk). |
|
|
|
[mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co./mistralai/Mixtral-8x7B-Instruct-v0.1) was used to generate a legal question for each context chunk. |
|
|
|
129,137 context-question pairs were used for training. |
|
|
|
14,348 context-question pairs were used for evaluation (see the table below for results). |
|
|
|
Using a 10% subset of the val dataset the following hit-rate performance was reached and is compared to the base model and OpenAI's default ada embedding model. |
|
|
|
| **Model** | **Avg. hit-rate** | |
|
|---------------------------|-------------------| |
|
| BAAI/bge-small-en | 89% | |
|
| OpenAI | 92% | |
|
| adlumal/auslaw-embed-v1.0 | **97%** | |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('adlumal/auslaw-embed-v1.0') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## Evaluation Results |
|
|
|
The model was evauluated on 10% of the available data. The automated eval results for the final step are presented below. |
|
|
|
| Eval | Score | |
|
|------------------------|--------------| |
|
| cos_sim-Accuracy@1 | 0.730206301 | |
|
| cos_sim-Accuracy@3 | 0.859562308 | |
|
| cos_sim-Accuracy@5 | 0.892737664 | |
|
| cos_sim-Accuracy@10 | 0.928352384 | |
|
| cos_sim-Precision@1 | 0.730206301 | |
|
| cos_sim-Recall@1 | 0.730206301 | |
|
| cos_sim-Precision@3 | 0.286520769 | |
|
| cos_sim-Recall@3 | 0.859562308 | |
|
| cos_sim-Precision@5 | 0.178547533 | |
|
| cos_sim-Recall@5 | 0.892737664 | |
|
| cos_sim-Precision@10 | 0.092835238 | |
|
| cos_sim-Recall@10 | 0.928352384 | |
|
| cos_sim-MRR@10 | 0.801075782 | |
|
| cos_sim-NDCG@10 | 0.832189447 | |
|
| cos_sim-MAP@100 | 0.803593645 | |
|
| dot_score-Accuracy@1 | 0.730136604 | |
|
| dot_score-Accuracy@3 | 0.859562308 | |
|
| dot_score-Accuracy@5 | 0.892737664 | |
|
| dot_score-Accuracy@10 | 0.928352384 | |
|
| dot_score-Precision@1 | 0.730136604 | |
|
| dot_score-Recall@1 | 0.730136604 | |
|
| dot_score-Precision@3 | 0.286520769 | |
|
| dot_score-Recall@3 | 0.859562308 | |
|
| dot_score-Precision@5 | 0.178547533 | |
|
| dot_score-Recall@5 | 0.892737664 | |
|
| dot_score-Precision@10 | 0.092835238 | |
|
| dot_score-Recall@10 | 0.928352384 | |
|
| dot_score-MRR@10 | 0.801040934 | |
|
| dot_score-NDCG@10 | 0.832163724 | |
|
| dot_score-MAP@100 | 0.803558796 | |
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 2583 with parameters: |
|
``` |
|
{'batch_size': 50, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: |
|
``` |
|
{'scale': 20.0, 'similarity_fct': 'cos_sim'} |
|
``` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 2, |
|
"evaluation_steps": 50, |
|
"evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 2e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 516, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
```bibtex |
|
@misc{malec-2024-auslaw-embed-v1, |
|
author = {Malec, Adrian Lucas}, |
|
year = {2024}, |
|
title = {AusLaw Embedding v1.0}, |
|
publisher = {Hugging Face}, |
|
version = {1.0}, |
|
url = {https://huggingface.co./adlumal/auslaw-embed-v1.0} |
|
} |
|
``` |