distilbert-base-uncased-textclassification_adalora
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6697
- Precision: 0.6503
- Recall: 0.5072
- F1: 0.5699
- Accuracy: 0.9524
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 213 | 1.9179 | 0.4803 | 0.2620 | 0.3390 | 0.9371 |
No log | 2.0 | 426 | 1.6876 | 0.5057 | 0.3194 | 0.3915 | 0.9404 |
1.7592 | 3.0 | 639 | 1.4144 | 0.5161 | 0.3445 | 0.4132 | 0.9420 |
1.7592 | 4.0 | 852 | 1.1653 | 0.5455 | 0.3517 | 0.4276 | 0.9428 |
1.1731 | 5.0 | 1065 | 1.0656 | 0.575 | 0.3852 | 0.4613 | 0.9443 |
1.1731 | 6.0 | 1278 | 0.9946 | 0.5878 | 0.4163 | 0.4874 | 0.9461 |
1.1731 | 7.0 | 1491 | 0.9620 | 0.6467 | 0.4139 | 0.5047 | 0.9464 |
0.8895 | 8.0 | 1704 | 0.9450 | 0.6587 | 0.4294 | 0.5199 | 0.9473 |
0.8895 | 9.0 | 1917 | 0.9187 | 0.6382 | 0.4557 | 0.5318 | 0.9488 |
0.8124 | 10.0 | 2130 | 0.9042 | 0.6528 | 0.4522 | 0.5343 | 0.9493 |
0.8124 | 11.0 | 2343 | 0.8847 | 0.6443 | 0.4701 | 0.5436 | 0.9500 |
0.7741 | 12.0 | 2556 | 0.8773 | 0.6594 | 0.4677 | 0.5472 | 0.9502 |
0.7741 | 13.0 | 2769 | 0.8642 | 0.6672 | 0.4653 | 0.5483 | 0.9502 |
0.7741 | 14.0 | 2982 | 0.8439 | 0.6694 | 0.4821 | 0.5605 | 0.9514 |
0.7346 | 15.0 | 3195 | 0.8381 | 0.6735 | 0.4737 | 0.5562 | 0.9512 |
0.7346 | 16.0 | 3408 | 0.8199 | 0.6773 | 0.4844 | 0.5649 | 0.9517 |
0.6966 | 17.0 | 3621 | 0.8007 | 0.6744 | 0.4856 | 0.5647 | 0.9521 |
0.6966 | 18.0 | 3834 | 0.7845 | 0.6618 | 0.4916 | 0.5642 | 0.9520 |
0.6575 | 19.0 | 4047 | 0.7677 | 0.6491 | 0.5 | 0.5649 | 0.9522 |
0.6575 | 20.0 | 4260 | 0.7573 | 0.6624 | 0.4904 | 0.5636 | 0.9524 |
0.6575 | 21.0 | 4473 | 0.7419 | 0.6561 | 0.4928 | 0.5628 | 0.9522 |
0.6218 | 22.0 | 4686 | 0.7282 | 0.6435 | 0.4988 | 0.5620 | 0.9522 |
0.6218 | 23.0 | 4899 | 0.7142 | 0.6346 | 0.5048 | 0.5623 | 0.9520 |
0.5894 | 24.0 | 5112 | 0.7173 | 0.6474 | 0.4964 | 0.5619 | 0.9521 |
0.5894 | 25.0 | 5325 | 0.7132 | 0.6562 | 0.4976 | 0.5660 | 0.9526 |
0.5728 | 26.0 | 5538 | 0.7051 | 0.6453 | 0.5048 | 0.5664 | 0.9523 |
0.5728 | 27.0 | 5751 | 0.7032 | 0.6462 | 0.5024 | 0.5653 | 0.9524 |
0.5728 | 28.0 | 5964 | 0.6984 | 0.6405 | 0.5072 | 0.5661 | 0.9524 |
0.5629 | 29.0 | 6177 | 0.6973 | 0.6502 | 0.5024 | 0.5668 | 0.9523 |
0.5629 | 30.0 | 6390 | 0.6928 | 0.6459 | 0.5084 | 0.5689 | 0.9527 |
0.5543 | 31.0 | 6603 | 0.6935 | 0.6483 | 0.5072 | 0.5691 | 0.9528 |
0.5543 | 32.0 | 6816 | 0.6893 | 0.6448 | 0.5060 | 0.5670 | 0.9526 |
0.5465 | 33.0 | 7029 | 0.6893 | 0.6593 | 0.5024 | 0.5703 | 0.9524 |
0.5465 | 34.0 | 7242 | 0.6863 | 0.6594 | 0.5048 | 0.5718 | 0.9526 |
0.5465 | 35.0 | 7455 | 0.6829 | 0.6543 | 0.5072 | 0.5714 | 0.9526 |
0.5414 | 36.0 | 7668 | 0.6780 | 0.6464 | 0.5096 | 0.5699 | 0.9528 |
0.5414 | 37.0 | 7881 | 0.6776 | 0.6508 | 0.5084 | 0.5709 | 0.9526 |
0.5341 | 38.0 | 8094 | 0.6764 | 0.6549 | 0.5084 | 0.5724 | 0.9525 |
0.5341 | 39.0 | 8307 | 0.6749 | 0.6549 | 0.5084 | 0.5724 | 0.9526 |
0.5301 | 40.0 | 8520 | 0.6773 | 0.6640 | 0.5012 | 0.5712 | 0.9525 |
0.5301 | 41.0 | 8733 | 0.6730 | 0.6518 | 0.5084 | 0.5712 | 0.9525 |
0.5301 | 42.0 | 8946 | 0.6717 | 0.6509 | 0.5108 | 0.5724 | 0.9526 |
0.5268 | 43.0 | 9159 | 0.6721 | 0.6544 | 0.5096 | 0.5730 | 0.9525 |
0.5268 | 44.0 | 9372 | 0.6694 | 0.6480 | 0.5108 | 0.5712 | 0.9526 |
0.5236 | 45.0 | 9585 | 0.6709 | 0.6528 | 0.5084 | 0.5716 | 0.9525 |
0.5236 | 46.0 | 9798 | 0.6694 | 0.6494 | 0.5096 | 0.5710 | 0.9525 |
0.5231 | 47.0 | 10011 | 0.6693 | 0.6514 | 0.5096 | 0.5718 | 0.9525 |
0.5231 | 48.0 | 10224 | 0.6696 | 0.6503 | 0.5072 | 0.5699 | 0.9524 |
0.5231 | 49.0 | 10437 | 0.6699 | 0.6513 | 0.5072 | 0.5703 | 0.9524 |
0.5224 | 50.0 | 10650 | 0.6697 | 0.6503 | 0.5072 | 0.5699 | 0.9524 |
Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.0.0+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 7
Model tree for Yeji-Seong/distilbert-base-uncased-textclassification_adalora
Base model
distilbert/distilbert-base-uncased