https://huggingface.co./LiheYoung/depth-anything-large-hf with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @xenova/transformers

Example: Depth estimation with Xenova/depth-anything-large-hf.

import { pipeline } from '@xenova/transformers';

// Create depth-estimation pipeline
const depth_estimator = await pipeline('depth-estimation', 'Xenova/depth-anything-large-hf');

// Predict depth map for the given image
const url = 'https://huggingface.co./datasets/Xenova/transformers.js-docs/resolve/main/bread_small.png';
const output = await depth_estimator(url);
// {
//   predicted_depth: Tensor {
//     dims: [350, 518],
//     type: 'float32',
//     data: Float32Array(181300) [...],
//     size: 181300
//   },
//   depth: RawImage {
//     data: Uint8Array(271360) [...],
//     width: 640,
//     height: 424,
//     channels: 1
//   }
// }

You can visualize the output with:

output.depth.save('depth.png');

image/png


Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).

Downloads last month
15
Inference API
Inference API (serverless) does not yet support transformers.js models for this pipeline type.

Model tree for Xenova/depth-anything-large-hf

Quantized
(1)
this model