MetaModel_moex8

This model is a Mixure of Experts (MoE) made with mergekit (mixtral branch). It uses the following base models:

🧩 Configuration

dtype: bfloat16
experts:
- positive_prompts:
  - ''
  source_model: gagan3012/MetaModel
- positive_prompts:
  - ''
  source_model: jeonsworld/CarbonVillain-en-10.7B-v2
- positive_prompts:
  - ''
  source_model: jeonsworld/CarbonVillain-en-10.7B-v4
- positive_prompts:
  - ''
  source_model: TomGrc/FusionNet_linear
- positive_prompts:
  - ''
  source_model: DopeorNope/SOLARC-M-10.7B
- positive_prompts:
  - ''
  source_model: VAGOsolutions/SauerkrautLM-SOLAR-Instruct
- positive_prompts:
  - ''
  source_model: upstage/SOLAR-10.7B-Instruct-v1.0
- positive_prompts:
  - ''
  source_model: fblgit/UNA-SOLAR-10.7B-Instruct-v1.0
gate_mode: hidden

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "gagan3012/MetaModel_moex8"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
844
Safetensors
Model size
69.9B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.