Edit model card

wav2vec2-large-robust-ft-libri-960h-finetuned-ravdess-v2

This model is a fine-tuned version of facebook/wav2vec2-large-robust-ft-libri-960h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0280
  • Accuracy: 0.6146

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0786 1.0 36 2.0692 0.1597
2.0578 2.0 72 2.0555 0.1979
1.9903 3.0 108 1.9172 0.2882
1.8052 4.0 144 1.7975 0.2951
1.7221 5.0 180 1.6602 0.4028
1.5773 6.0 216 1.6362 0.4479
1.4785 7.0 252 1.4675 0.4965
1.3828 8.0 288 1.3735 0.5
1.2352 9.0 324 1.2886 0.5278
1.159 10.0 360 1.2184 0.5521
1.073 11.0 396 1.1456 0.5556
1.0127 12.0 432 1.1864 0.5694
0.9374 13.0 468 1.1865 0.5625
0.8622 14.0 504 1.1745 0.5660
0.8704 15.0 540 1.1563 0.5694
0.8607 16.0 576 1.0466 0.5938
0.8228 17.0 612 1.0457 0.6007
0.8521 18.0 648 1.0280 0.6146
0.8248 19.0 684 1.0399 0.6146
0.7901 20.0 720 1.0402 0.6111

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Wiam/wav2vec2-large-robust-ft-libri-960h-finetuned-ravdess-v2

Finetuned
(2)
this model