metadata
license: other
tags:
- yi
- moe
license_name: yi-license
license_link: https://huggingface.co./01-ai/Yi-34B-200K/blob/main/LICENSE
model-index:
- name: Helion-4x34B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.71
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.28
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.33
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 63.91
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.37
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.25
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
name: Open LLM Leaderboard
Helion-4x34B
This is the model for Helion-4x34B. I used mergekit to make this MOE model.
Prompt Template(s):
Since bagel-dpo-34b-v0.2 uses many prompt templates, you can utilize prompt templates provided by bagel and other expert's prompt templates.
Note: I currently do not know which prompt template is best.
ChatML:
<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>
Human Asistant
Human: {user}
### Assistant: {asistant}
Alpaca (sort of)
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{system}
{instruction}
### Response:
Vicuna
{system}
USER: {instruction}
ASSISTANT:
Visit bagel-dpo-34b-v0.2 to try more prompt templates.
Yaml Config to reproduce
base_model: nontoxic-bagel-34b-v0.2
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: bagel-dpo-34b-v0.2
positive_prompts: ["question answering", "Q:", science", "biology", "chemistry", "physics"]
negative_prompts: ["math", "reason", "mathematics", "solve", "count", "code", "python", "javascript", "programming", "algorithm"]
- source_model: Nous-Hermes-2-Yi-34B
positive_prompts: ["chat", "math", "reason", "mathematics", "solve", "count", "python", "javascript", "programming", "algorithm", "tell me", "assistant"]
- source_model: SUS-Chat-34B
positive_prompts: ["math", "reason", "mathematics", "solve", "count", "assistant"]
- source_model: platypus-yi-34b
positive_prompts: [""]
negative_prompts: ["math", "reason", "mathematics", "solve", "count"]
Quantizationed versions
Quantizationed versions of this model is available thanks to TheBloke.
GPTQ
GGUF
AWQ
If you would like to support me:
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.48 |
AI2 Reasoning Challenge (25-Shot) | 69.71 |
HellaSwag (10-Shot) | 85.28 |
MMLU (5-Shot) | 77.33 |
TruthfulQA (0-shot) | 63.91 |
Winogrande (5-shot) | 84.37 |
GSM8k (5-shot) | 72.25 |