Helion-4x34B / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
2258182 verified
|
raw
history blame
5.82 kB
metadata
license: other
tags:
  - yi
  - moe
license_name: yi-license
license_link: https://huggingface.co./01-ai/Yi-34B-200K/blob/main/LICENSE
model-index:
  - name: Helion-4x34B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 69.71
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.28
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.33
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 63.91
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 84.37
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 72.25
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
          name: Open LLM Leaderboard

image/jpeg

Helion-4x34B

This is the model for Helion-4x34B. I used mergekit to make this MOE model.

Prompt Template(s):

Since bagel-dpo-34b-v0.2 uses many prompt templates, you can utilize prompt templates provided by bagel and other expert's prompt templates.

Note: I currently do not know which prompt template is best.

ChatML:

<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>

Human Asistant

Human: {user}

### Assistant: {asistant}

Alpaca (sort of)

Below is an instruction that describes a task.  Write a response that appropriately completes the request.

### Instruction:
{system}
{instruction}

### Response:

Vicuna

{system}
USER: {instruction}
ASSISTANT: 

Visit bagel-dpo-34b-v0.2 to try more prompt templates.

Yaml Config to reproduce

base_model: nontoxic-bagel-34b-v0.2
gate_mode: hidden
dtype: bfloat16

experts:
  - source_model: bagel-dpo-34b-v0.2
    positive_prompts: ["question answering", "Q:", science", "biology", "chemistry", "physics"]
    negative_prompts: ["math", "reason", "mathematics", "solve", "count", "code", "python", "javascript", "programming", "algorithm"]

  - source_model: Nous-Hermes-2-Yi-34B
    positive_prompts: ["chat", "math", "reason", "mathematics", "solve", "count", "python", "javascript", "programming", "algorithm", "tell me", "assistant"]

  - source_model: SUS-Chat-34B
    positive_prompts: ["math", "reason", "mathematics", "solve", "count", "assistant"]

  - source_model: platypus-yi-34b
    positive_prompts: [""]
    negative_prompts: ["math", "reason", "mathematics", "solve", "count"]

Quantizationed versions

Quantizationed versions of this model is available thanks to TheBloke.

GPTQ
GGUF
AWQ

If you would like to support me:

☕ Buy Me a Coffee

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.48
AI2 Reasoning Challenge (25-Shot) 69.71
HellaSwag (10-Shot) 85.28
MMLU (5-Shot) 77.33
TruthfulQA (0-shot) 63.91
Winogrande (5-shot) 84.37
GSM8k (5-shot) 72.25