Cosmosis-3x34B / README.md
Weyaxi's picture
Update README.md
0f3d0e9 verified
metadata
license: other
tags:
  - yi
  - moe
license_name: yi-license
license_link: https://huggingface.co./01-ai/Yi-34B-200K/blob/main/LICENSE
model-index:
  - name: Cosmosis-3x34B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 69.71
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Cosmosis-3x34B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.18
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Cosmosis-3x34B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.25
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Cosmosis-3x34B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 63.82
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Cosmosis-3x34B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 84.14
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Cosmosis-3x34B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 72.25
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Cosmosis-3x34B
          name: Open LLM Leaderboard

image/jpeg

Cosmosis-3x34B

This is the model for Cosmosis-3x34B. I used this repo to make this MOE model.

Prompt Template(s):

Since bagel-dpo-34b-v0.2 uses many prompt templates, you can utilize prompt templates provided by bagel and other expert's prompt templates.

Note: I currently do not know which prompt template is best.

ChatML:

<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>

Human Asistant

Human: {user}

### Assistant: {asistant}

Alpaca (sort of)

Below is an instruction that describes a task.  Write a response that appropriately completes the request.

### Instruction:
{system}
{instruction}

### Response:

Vicuna

{system}
USER: {instruction}
ASSISTANT: 

Visit bagel-dpo-34b-v0.2 to try more prompt templates.

Yaml Config to reproduce

base_model: nontoxic-bagel-34b-v0.2
gate_mode: hidden
dtype: bfloat16

experts:
  - source_model: bagel-dpo-34b-v0.2
    positive_prompts: ["question answering", "Q:", science", "biology", "chemistry", "physics"]
    negative_prompts: ["math", "reason", "mathematics", "solve", "count", "code", "python", "javascript", "programming", "algorithm"]

  - source_model: Nous-Hermes-2-Yi-34B
    positive_prompts: ["chat", "math", "reason", "mathematics", "solve", "count", "python", "javascript", "programming", "algorithm", "tell me", "assistant"]

  - source_model: SUS-Chat-34B
    positive_prompts: ["math", "reason", "mathematics", "solve", "count", "assistant"]

Quantizationed versions

Quantizationed versions of this model is available thanks to TheBloke.

GPTQ
GGUF
AWQ

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.39
AI2 Reasoning Challenge (25-Shot) 69.71
HellaSwag (10-Shot) 85.18
MMLU (5-Shot) 77.25
TruthfulQA (0-shot) 63.82
Winogrande (5-shot) 84.14
GSM8k (5-shot) 72.25

If you would like to support me:

☕ Buy Me a Coffee