Edit model card

invitrace-vit-base-food

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7567
  • Accuracy: 0.6960

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.0781 0.0803 100 5.0829 0.0433
4.9949 0.1605 200 4.9850 0.0857
4.9031 0.2408 300 4.8898 0.1674
4.7506 0.3210 400 4.7910 0.1959
4.718 0.4013 500 4.6958 0.2248
4.5883 0.4815 600 4.6033 0.2378
4.5255 0.5618 700 4.5165 0.2846
4.4352 0.6421 800 4.4288 0.3209
4.3072 0.7223 900 4.3482 0.3325
4.2581 0.8026 1000 4.2725 0.3693
4.1635 0.8828 1100 4.1993 0.3701
4.2149 0.9631 1200 4.1301 0.4036
3.9068 1.0433 1300 4.0589 0.4212
3.906 1.1236 1400 3.9937 0.4258
3.8074 1.2039 1500 3.9265 0.4401
3.846 1.2841 1600 3.8624 0.4636
3.7287 1.3644 1700 3.7921 0.4746
3.6785 1.4446 1800 3.7291 0.4939
3.6254 1.5249 1900 3.6768 0.5073
3.5377 1.6051 2000 3.6177 0.5001
3.4988 1.6854 2100 3.5622 0.5150
3.5051 1.7657 2200 3.5017 0.5133
3.4085 1.8459 2300 3.4415 0.5238
3.3978 1.9262 2400 3.3934 0.5348
3.3711 2.0064 2500 3.3364 0.5360
3.1439 2.0867 2600 3.2798 0.5449
3.1757 2.1669 2700 3.2288 0.5509
2.9329 2.2472 2800 3.1791 0.5521
2.8305 2.3274 2900 3.1239 0.5671
2.8984 2.4077 3000 3.0785 0.5609
3.0165 2.4880 3100 3.0352 0.5697
2.8105 2.5682 3200 2.9885 0.5820
2.7716 2.6485 3300 2.9396 0.5846
2.8448 2.7287 3400 2.8953 0.5884
2.6256 2.8090 3500 2.8594 0.5866
2.658 2.8892 3600 2.8157 0.5970
2.5392 2.9695 3700 2.7728 0.6008
2.4969 3.0498 3800 2.7359 0.6091
2.2975 3.1300 3900 2.6909 0.6187
2.1984 3.2103 4000 2.6527 0.6181
2.2088 3.2905 4100 2.6191 0.6217
2.147 3.3708 4200 2.5753 0.6235
2.0769 3.4510 4300 2.5453 0.6241
2.3726 3.5313 4400 2.5109 0.6362
2.0648 3.6116 4500 2.4840 0.6245
2.1653 3.6918 4600 2.4469 0.6366
1.8567 3.7721 4700 2.4177 0.6398
2.1076 3.8523 4800 2.3938 0.6386
2.0246 3.9326 4900 2.3539 0.6480
1.8459 4.0128 5000 2.3342 0.6432
1.7608 4.0931 5100 2.3074 0.6476
1.7977 4.1734 5200 2.2793 0.6516
1.7611 4.2536 5300 2.2519 0.6526
1.777 4.3339 5400 2.2320 0.6512
1.642 4.4141 5500 2.2008 0.6594
1.7745 4.4944 5600 2.1775 0.6592
1.6992 4.5746 5700 2.1538 0.6604
1.6188 4.6549 5800 2.1346 0.6627
1.6404 4.7352 5900 2.1158 0.6705
1.6618 4.8154 6000 2.0963 0.6671
1.4585 4.8957 6100 2.0718 0.6705
1.5439 4.9759 6200 2.0525 0.6719
1.3129 5.0562 6300 2.0362 0.6753
1.4422 5.1364 6400 2.0254 0.6723
1.3851 5.2167 6500 2.0113 0.6739
1.5312 5.2970 6600 1.9929 0.6785
1.4072 5.3772 6700 1.9740 0.6781
1.4402 5.4575 6800 1.9656 0.6721
1.4257 5.5377 6900 1.9462 0.6827
1.3762 5.6180 7000 1.9337 0.6853
1.2985 5.6982 7100 1.9214 0.6779
1.2026 5.7785 7200 1.9081 0.6831
1.2968 5.8587 7300 1.8945 0.6847
1.3511 5.9390 7400 1.8835 0.6901
1.1626 6.0193 7500 1.8732 0.6867
1.1289 6.0995 7600 1.8625 0.6903
1.1951 6.1798 7700 1.8548 0.6847
1.1203 6.2600 7800 1.8456 0.6893
1.0551 6.3403 7900 1.8386 0.6885
0.9919 6.4205 8000 1.8277 0.6914
1.1204 6.5008 8100 1.8207 0.6893
1.2432 6.5811 8200 1.8146 0.6895
1.0495 6.6613 8300 1.8016 0.6920
1.0898 6.7416 8400 1.8014 0.6911
1.1495 6.8218 8500 1.7988 0.6948
1.2172 6.9021 8600 1.7952 0.6895
1.063 6.9823 8700 1.7848 0.6968
1.0807 7.0626 8800 1.7835 0.6926
0.9908 7.1429 8900 1.7796 0.6944
1.0848 7.2231 9000 1.7796 0.6946
1.0682 7.3034 9100 1.7703 0.6922
0.9353 7.3836 9200 1.7686 0.6948
1.0604 7.4639 9300 1.7650 0.6932
0.9961 7.5441 9400 1.7639 0.6938
1.096 7.6244 9500 1.7624 0.6964
0.9436 7.7047 9600 1.7599 0.6952
1.0565 7.7849 9700 1.7591 0.6954
0.9172 7.8652 9800 1.7579 0.6958
1.0549 7.9454 9900 1.7567 0.6960

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
85.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tuu-invitrace/invitrace-vit-base-food

Finetuned
(1686)
this model

Evaluation results