metadata
base_model:
- bluuwhale/L3-SthenoMaidBlackroot-8B-V1
- Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- bluuwhale/L3-SthenoMaidBlackroot-8B-V1
- Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- bluuwhale/L3-SthenoMaidBlackroot-8B-V1
- Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- bluuwhale/L3-SthenoMaidBlackroot-8B-V1
tags:
- merge
- mergekit
- lazymergekit
- bluuwhale/L3-SthenoMaidBlackroot-8B-V1
- Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
Llama3-Omphalos-12B
Llama3-Omphalos-12B is a merge of the following models using LazyMergekit:
- bluuwhale/L3-SthenoMaidBlackroot-8B-V1
- Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- bluuwhale/L3-SthenoMaidBlackroot-8B-V1
- Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- bluuwhale/L3-SthenoMaidBlackroot-8B-V1
- Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- bluuwhale/L3-SthenoMaidBlackroot-8B-V1
🧩 Configuration
dtype: bfloat16
merge_method: passthrough
slices:
- sources:
- layer_range: [0, 8]
model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1
- sources:
- layer_range: [4, 12]
model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- sources:
- layer_range: [9, 16]
model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1
- sources:
- layer_range: [13, 20]
model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- sources:
- layer_range: [17, 24]
model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1
- sources:
- layer_range: [21, 28]
model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- sources:
- layer_range: [25, 32]
model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Tremontaine/Llama3-Omphalos-12B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])