Adding Evaluation Results

#10
Files changed (1) hide show
  1. README.md +118 -2
README.md CHANGED
@@ -1,11 +1,127 @@
1
  ---
2
- license: mit
3
  language:
4
  - en
 
5
  tags:
6
  - moe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
  # FusionNet
9
  Fine-tuned model on English language using MoE method.
10
  ## Model description
11
- The FusionNet is a model to experiment with the MoE method, which could significantly increase the performance of the original model. The FusionNet has 12.9B parameters, and this model is fine-tuned. Enjoy!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
2
  language:
3
  - en
4
+ license: mit
5
  tags:
6
  - moe
7
+ model-index:
8
+ - name: FusionNet_7Bx2_MoE_14B
9
+ results:
10
+ - task:
11
+ type: text-generation
12
+ name: Text Generation
13
+ dataset:
14
+ name: AI2 Reasoning Challenge (25-Shot)
15
+ type: ai2_arc
16
+ config: ARC-Challenge
17
+ split: test
18
+ args:
19
+ num_few_shot: 25
20
+ metrics:
21
+ - type: acc_norm
22
+ value: 73.55
23
+ name: normalized accuracy
24
+ source:
25
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
26
+ name: Open LLM Leaderboard
27
+ - task:
28
+ type: text-generation
29
+ name: Text Generation
30
+ dataset:
31
+ name: HellaSwag (10-Shot)
32
+ type: hellaswag
33
+ split: validation
34
+ args:
35
+ num_few_shot: 10
36
+ metrics:
37
+ - type: acc_norm
38
+ value: 88.84
39
+ name: normalized accuracy
40
+ source:
41
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
42
+ name: Open LLM Leaderboard
43
+ - task:
44
+ type: text-generation
45
+ name: Text Generation
46
+ dataset:
47
+ name: MMLU (5-Shot)
48
+ type: cais/mmlu
49
+ config: all
50
+ split: test
51
+ args:
52
+ num_few_shot: 5
53
+ metrics:
54
+ - type: acc
55
+ value: 64.68
56
+ name: accuracy
57
+ source:
58
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
59
+ name: Open LLM Leaderboard
60
+ - task:
61
+ type: text-generation
62
+ name: Text Generation
63
+ dataset:
64
+ name: TruthfulQA (0-shot)
65
+ type: truthful_qa
66
+ config: multiple_choice
67
+ split: validation
68
+ args:
69
+ num_few_shot: 0
70
+ metrics:
71
+ - type: mc2
72
+ value: 69.6
73
+ source:
74
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
75
+ name: Open LLM Leaderboard
76
+ - task:
77
+ type: text-generation
78
+ name: Text Generation
79
+ dataset:
80
+ name: Winogrande (5-shot)
81
+ type: winogrande
82
+ config: winogrande_xl
83
+ split: validation
84
+ args:
85
+ num_few_shot: 5
86
+ metrics:
87
+ - type: acc
88
+ value: 88.16
89
+ name: accuracy
90
+ source:
91
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
92
+ name: Open LLM Leaderboard
93
+ - task:
94
+ type: text-generation
95
+ name: Text Generation
96
+ dataset:
97
+ name: GSM8k (5-shot)
98
+ type: gsm8k
99
+ config: main
100
+ split: test
101
+ args:
102
+ num_few_shot: 5
103
+ metrics:
104
+ - type: acc
105
+ value: 70.66
106
+ name: accuracy
107
+ source:
108
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
109
+ name: Open LLM Leaderboard
110
  ---
111
  # FusionNet
112
  Fine-tuned model on English language using MoE method.
113
  ## Model description
114
+ The FusionNet is a model to experiment with the MoE method, which could significantly increase the performance of the original model. The FusionNet has 12.9B parameters, and this model is fine-tuned. Enjoy!
115
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
116
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TomGrc__FusionNet_7Bx2_MoE_14B)
117
+
118
+ | Metric |Value|
119
+ |---------------------------------|----:|
120
+ |Avg. |75.91|
121
+ |AI2 Reasoning Challenge (25-Shot)|73.55|
122
+ |HellaSwag (10-Shot) |88.84|
123
+ |MMLU (5-Shot) |64.68|
124
+ |TruthfulQA (0-shot) |69.60|
125
+ |Winogrande (5-shot) |88.16|
126
+ |GSM8k (5-shot) |70.66|
127
+