metadata
language:
- en
license: mit
tags:
- moe
model-index:
- name: FusionNet_7Bx2_MoE_14B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.55
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.84
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.68
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 69.6
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 88.16
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.66
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_7Bx2_MoE_14B
name: Open LLM Leaderboard
FusionNet
Fine-tuned model on English language using MoE method.
Model description
The FusionNet is a model to experiment with the MoE method, which could significantly increase the performance of the original model. The FusionNet has 12.9B parameters, and this model is fine-tuned. Enjoy!
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.91 |
AI2 Reasoning Challenge (25-Shot) | 73.55 |
HellaSwag (10-Shot) | 88.84 |
MMLU (5-Shot) | 64.68 |
TruthfulQA (0-shot) | 69.60 |
Winogrande (5-shot) | 88.16 |
GSM8k (5-shot) | 70.66 |