See axolotl config
axolotl version: 0.6.0
# git clone https://github.com/axolotl-ai-cloud/axolotl
# cd axolotl
# git checkout 844331005c1ef45430ff26b9f42f757dce6ee66a
# pip3 install packaging ninja huggingface_hub[cli]
# pip3 install -e '.[flash-attn,deepspeed]'
# huggingface-cli login --token $hf_key && wandb login $wandb_key
# python -m axolotl.cli.preprocess new-ms-rp-only-test.yml
# accelerate launch -m axolotl.cli.train new-ms-rp-only-test.yml
# python -m axolotl.cli.merge_lora new-ms-rp-only-test.yml --lora_on_cpu
# huggingface-cli upload ToastyPigeon/ms-rp-only-qlora-TEST train-workspace/merged . --exclude "*.md"
# git clone https://github.com/axolotl-ai-cloud/axolotl && cd axolotl && pip3 install packaging ninja huggingface_hub[cli] && pip3 install -e '.[flash-attn,deepspeed]' && cd .. && huggingface-cli login --token $hf_key && wandb login $wandb_key
# Model
base_model: mistralai/Mistral-Small-24B-Instruct-2501
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
bf16: auto
fp16:
tf32: false
flash_attention: true
special_tokens:
# Output
output_dir: ./train-workspace
hub_model_id: ToastyPigeon/new-ms-rp-test-ws
hub_strategy: "checkpoint"
resume_from_checkpoint:
saves_per_epoch: 1
# Data
sequence_len: 4096 # fits
min_sample_len: 128
dataset_prepared_path: last_run_prepared
datasets:
- path: ToastyPigeon/some-rp-extended
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
warmup_steps: 10
shuffle_merged_datasets: true
sample_packing: true
pad_to_sequence_len: true
chat_template: jinja
chat_template_jinja: "{%- set default_system_message = \"You are an unbiased, unfiltered, and unaligned AI.\" %}\n\n{{- bos_token }}\n\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = default_system_message %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}\n\n{%- for message in loop_messages %}\n {%- if message['role'] == 'user' %}\n {{- '[INST]' + message['content'] + '[/INST]' }}\n {%- elif message['role'] == 'system' %}\n {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}\n {%- elif message['role'] == 'assistant' %}\n {{- message['content'] + eos_token }}\n {%- else %}\n {{- raise_exception('Only user, system and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}"
# Batching
num_epochs: 1
gradient_accumulation_steps: 4
micro_batch_size: 1
eval_batch_size: 1
# Evaluation
val_set_size: 40
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: false
save_safetensors: true
# WandB
wandb_project: MS-Rp-Test
#wandb_entity:
gradient_checkpointing: 'unsloth'
#gradient_checkpointing_kwargs:
# use_reentrant: false
unsloth_cross_entropy_loss: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true
# LoRA
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.25
lora_target_linear:
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
# Optimizer
optimizer: paged_ademamix_8bit # adamw_8bit
lr_scheduler: cosine
learning_rate: 5e-5
cosine_min_lr_ratio: 0.5
weight_decay: 0.01
max_grad_norm: 1.0
# Misc
train_on_inputs: false
group_by_length: false
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
debug:
#deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json # previously blank
fsdp:
fsdp_config:
plugins:
- axolotl.integrations.liger.LigerPlugin
# - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
#cut_cross_entropy: true
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
#liger_fused_linear_cross_entropy: true
gc_steps: 10
seed: 69
new-ms-rp-test-ws
This model is a fine-tuned version of mistralai/Mistral-Small-24B-Instruct-2501 on the ToastyPigeon/some-rp-extended dataset. It achieves the following results on the evaluation set:
- Loss: 2.1127
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 69
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.PAGED_ADEMAMIX_8BIT and the args are: No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4594 | 0.0078 | 1 | 2.2498 |
2.1355 | 0.2031 | 26 | 2.1281 |
2.1069 | 0.4062 | 52 | 2.1199 |
1.8512 | 0.6094 | 78 | 2.1148 |
2.0247 | 0.8125 | 104 | 2.1127 |
Framework versions
- PEFT 0.14.0
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for ToastyPigeon/new-ms-rp-test-ws
Base model
mistralai/Mistral-Small-24B-Base-2501