multilingual-xlm-roberta-for-ner
Model description
xlm-roberta-base-multilingual-cased-ner is a Named Entity Recognition model based on a fine-tuned XLM-RoBERTa base model. It has been trained to recognize three types of entities: location (LOC), organizations (ORG), and person (PER). Specifically, this model is a XLMRoreberta-base-multilingual-cased model that was fine-tuned on an aggregation of 10 high-resourced languages.
How to use
You can use this model with Transformers pipeline for NER.
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("Tirendaz/roberta-base-NER")
model = AutoModelForTokenClassification.from_pretrained("Tirendaz/roberta-base-NER")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "My name is Wolfgang and I live in Berlin"
ner_results = nlp(example)
print(ner_results)
Abbreviation | Description |
---|---|
O | Outside of a named entity |
B-PER | Beginning of a person’s name right after another person’s name |
I-PER | Person’s name |
B-ORG | Beginning of an organisation right after another organisation |
I-ORG | Organisation |
B-LOC | Beginning of a location right after another location |
I-LOC | Location |
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 263 | 0.1627 | 0.8229 |
0.214 | 2.0 | 526 | 0.1410 | 0.8472 |
0.214 | 3.0 | 789 | 0.1343 | 0.8608 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.