metadata
language: en
tags:
- qa
- classification
- question
- answering
- SQuAD
- metric
- nlg
- t5-small
license: mit
datasets:
- squad
- cnndm
model-index:
- name: t5-weighter_cnndm-en
results:
- task:
name: Classification
type: Question Weighter
widget:
- text: >-
a Buckingham Palace guard </s> Who felt on a manhole? </s> This is the
embarrassing moment a Buckingham Palace guard slipped and fell on a
manhole cover in front of hundreds of shocked tourists as he took up
position in his sentry box. [...] The Guard comprises two detachments, one
each for Buckingham Palace and St James’s Palace, under the command of the
Captain of The Queen’s Guard.
t5-weighter_cnndm-en
Model description
This model is a Classifier model based on T5-small, that predicts if a answer / question couple is considered as important fact or not (Is this answer enough relevant to appear in a plausible summary?). It is actually a component of QuestEval metric but can be used independently as it is.
How to use
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("ThomasNLG/t5-weighter_cnndm-en")
model = T5ForConditionalGeneration.from_pretrained("ThomasNLG/t5-weighter_cnndm-en")
You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):
text_input = "{ANSWER} </s> {QUESTION} </s> {CONTEXT}"
Training data
The model was trained on synthetic data as described in Questeval: Summarization asks for fact-based evaluation.
Citation info
@article{scialom2021questeval,
title={Questeval: Summarization asks for fact-based evaluation},
author={Scialom, Thomas and Dray, Paul-Alexis and Gallinari, Patrick and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo and Wang, Alex},
journal={arXiv preprint arXiv:2103.12693},
year={2021}
}