Llama.cpp imatrix quantizations of Qwen/Qwen2.5-Coder-1.5B-Instruct

Using llama.cpp commit 3ad5451 for quantization.

All quants were made using the imatrix option and Bartowski's calibration file.


Perplexity table (the lower the better)

Quant Size (MB) PPL Size (%) Accuracy (%) PPL error rate
IQ1_S 416 65.5925 14.10 18.53 1.27
IQ1_M 442 37.5490 14.98 32.37 0.67
IQ2_XXS 487 28.2797 16.51 42.98 0.52
IQ2_XS 524 19.7773 17.76 61.45 0.34
IQ2_S 537 18.3488 18.20 66.24 0.31
IQ2_M 573 16.4023 19.42 74.10 0.28
Q2_K_S 610 16.9464 20.68 71.72 0.28
IQ3_XXS 637 14.0319 21.59 86.61 0.23
Q2_K 644 15.4455 21.83 78.69 0.25
IQ3_XS 697 13.2295 23.63 91.87 0.21
Q3_K_S 725 13.6908 24.58 88.77 0.22
IQ3_S 727 13.0527 24.64 93.11 0.21
IQ3_M 740 12.9347 25.08 93.96 0.21
Q3_K_M 785 13.1079 26.61 92.72 0.21
Q3_K_L 839 12.9958 28.44 93.52 0.21
IQ4_XS 854 12.5238 28.95 97.04 0.20
IQ4_NL 892 12.5165 30.24 97.10 0.20
Q4_0 894 12.6002 30.31 96.46 0.20
Q4_K_S 896 12.4550 30.37 97.58 0.20
Q4_K_M 940 12.4048 31.86 97.97 0.20
Q4_1 969 12.4660 32.85 97.49 0.20
Q5_K_S 1047 12.2279 35.49 99.39 0.20
Q5_0 1050 12.2580 35.59 99.15 0.20
Q5_K_M 1072 12.2216 36.34 99.44 0.20
Q5_1 1125 12.2391 38.13 99.30 0.20
Q6_K 1213 12.1951 41.12 99.66 0.20
Q8_0 1570 12.1583 53.22 99.96 0.20
F16 2950 12.1537 100 100 0.20

Qwen2.5-Coder-1.5B-Instruct

Chat

Introduction

Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5:

  • Significantly improvements in code generation, code reasoning and code fixing. Base on the strong Qwen2.5, we scale up the training tokens into 5.5 trillion including source code, text-code grounding, Synthetic data, etc. Qwen2.5-Coder-32B has become the current state-of-the-art open-source codeLLM, with its coding abilities matching those of GPT-4o.
  • A more comprehensive foundation for real-world applications such as Code Agents. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies.

This repo contains the instruction-tuned 1.5B Qwen2.5-Coder model, which has the following features:

  • Type: Causal Language Models
  • Training Stage: Pretraining & Post-training
  • Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
  • Number of Parameters: 1.54B
  • Number of Paramaters (Non-Embedding): 1.31B
  • Number of Layers: 28
  • Number of Attention Heads (GQA): 12 for Q and 2 for KV
  • Context Length: Full 32,768 tokens

For more details, please refer to our blog, GitHub, Documentation, Arxiv.

Requirements

The code of Qwen2.5-Coder has been in the latest Hugging face transformers and we advise you to use the latest version of transformers.

With transformers<4.37.0, you will encounter the following error:

KeyError: 'qwen2'

Quickstart

Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/Qwen2.5-Coder-1.5B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "write a quick sort algorithm."
messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

Evaluation & Performance

Detailed evaluation results are reported in this 📑 blog.

For requirements on GPU memory and the respective throughput, see results here.

Citation

If you find our work helpful, feel free to give us a cite.

@article{hui2024qwen2,
      title={Qwen2. 5-Coder Technical Report},
      author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others},
      journal={arXiv preprint arXiv:2409.12186},
      year={2024}
}
@article{qwen2,
      title={Qwen2 Technical Report}, 
      author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
      journal={arXiv preprint arXiv:2407.10671},
      year={2024}
}
Downloads last month
586
GGUF
Model size
1.54B params
Architecture
qwen2

1-bit

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ThomasBaruzier/Qwen2.5-Coder-1.5B-Instruct-GGUF

Base model

Qwen/Qwen2.5-1.5B
Quantized
(36)
this model

Collection including ThomasBaruzier/Qwen2.5-Coder-1.5B-Instruct-GGUF