DeepSeek-R1-ReDistill
Collection
Re-distilled DeepSeek R1 models
•
2 items
•
Updated
Using llama.cpp commit 3ad5451 for quantization.
All quants were made using the imatrix option and Bartowski's calibration file.
Quant | Size (MB) | PPL | Size (%) | Accuracy (%) | PPL error rate |
---|---|---|---|---|---|
IQ1_S | 1815 | 29.3739 | 12.49 | 49.92 | 0.53 |
IQ1_M | 1947 | 23.4611 | 13.40 | 62.50 | 0.42 |
IQ2_XXS | 2167 | 23.8257 | 14.91 | 61.54 | 0.46 |
IQ2_XS | 2354 | 20.5413 | 16.20 | 71.38 | 0.39 |
IQ2_S | 2475 | 19.3763 | 17.03 | 75.67 | 0.36 |
IQ2_M | 2651 | 22.3007 | 18.24 | 65.75 | 0.44 |
Q2_K_S | 2702 | 17.5446 | 18.59 | 83.57 | 0.31 |
Q2_K | 2876 | 16.9426 | 19.79 | 86.54 | 0.29 |
IQ3_XXS | 2970 | 16.2668 | 20.44 | 90.14 | 0.29 |
IQ3_XS | 3191 | 16.1443 | 21.96 | 90.82 | 0.29 |
Q3_K_S | 3330 | 17.0364 | 22.92 | 86.07 | 0.29 |
IQ3_S | 3337 | 16.1048 | 22.96 | 91.04 | 0.29 |
IQ3_M | 3408 | 15.8128 | 23.45 | 92.72 | 0.28 |
Q3_K_M | 3631 | 15.2580 | 24.99 | 96.10 | 0.26 |
Q3_K_L | 3899 | 15.1997 | 26.83 | 96.46 | 0.26 |
IQ4_XS | 4023 | 14.9385 | 27.68 | 98.15 | 0.25 |
IQ4_NL | 4232 | 14.9257 | 29.12 | 98.24 | 0.25 |
Q4_0 | 4238 | 15.2621 | 29.17 | 96.07 | 0.26 |
Q4_K_S | 4251 | 14.8852 | 29.25 | 98.50 | 0.26 |
Q4_K_M | 4466 | 14.8666 | 30.73 | 98.63 | 0.26 |
Q4_1 | 4647 | 14.8789 | 31.98 | 98.54 | 0.26 |
Q5_K_S | 5068 | 14.7449 | 34.88 | 99.44 | 0.25 |
Q5_0 | 5081 | 14.7425 | 34.97 | 99.46 | 0.25 |
Q5_K_M | 5192 | 14.7327 | 35.73 | 99.52 | 0.25 |
Q5_1 | 5490 | 14.7293 | 37.78 | 99.55 | 0.25 |
Q6_K | 5964 | 14.6907 | 41.04 | 99.81 | 0.25 |
Q8_0 | 7723 | 14.6686 | 53.15 | 99.96 | 0.25 |
F16 | 14531 | 14.6625 | 100 | 100 | 0.25 |
This is a version of the DeepSeek-R1-Distill-Qwen-7B model re-distilled for better performance.
Models | DeepSeek-R1-Distill-Qwen-7B | DeepSeek-R1-ReDistill-Qwen-7B-v1.1 |
---|---|---|
ARC (25-shot) | 55.03 | 52.3 |
HellaSwag (10-shot) | 61.9 | 62.36 |
MMLU (5-shot) | 56.75 | 59.53 |
TruthfulQA-MC2 | 45.76 | 47.7 |
Winogrande (5-shot) | 60.38 | 61.8 |
GSM8K (5-shot) | 78.85 | 83.4 |
Average | 59.78 | 61.18 |
Models | DeepSeek-R1-Distill-Qwen-7B | DeepSeek-R1-ReDistill-Qwen-7B-v1.1 |
---|---|---|
GPQA (0-shot) | 30.9 | 34.99 |
MMLU PRO (5-shot) | 28.83 | 31.02 |
MUSR (0-shot) | 38.85 | 44.42 |
BBH (3-shot) | 43.54 | 51.53 |
IfEval (0-shot) - strict | 42.33 | 35.49 |
IfEval (0-shot) - loose | 30.31 | 38.49 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
compute_dtype = torch.bfloat16
device = 'cuda'
model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa", device_map=device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "What is 1.5+102.2?"
chat = tokenizer.apply_chat_template([{"role":"user", "content":prompt}], tokenize=True, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(chat.to(device), max_new_tokens=1024, do_sample=True)
print(tokenizer.decode(outputs[0]))
Output:
<|begin▁of▁sentence|><|User|>What is 1.5+102.2?<|Assistant|><think>
First, I need to add the whole number parts of the two numbers. The whole numbers are 1 and 102, which add up to 103.
Next, I add the decimal parts of the two numbers. The decimal parts are 0.5 and 0.2, which add up to 0.7.
Finally, I combine the whole number and decimal parts to get the total sum. Adding 103 and 0.7 gives me 103.7.
</think>
To add the numbers \(1.5\) and \(102.2\), follow these steps:
1. **Add the whole number parts:**
\[
1 + 102 = 103
\]
2. **Add the decimal parts:**
\[
0.5 + 0.2 = 0.7
\]
3. **Combine the results:**
\[
103 + 0.7 = 103.7
\]
**Final Answer:**
\[
\boxed{103.7}
\]<|end▁of▁sentence|>
Run ~3.5x faster with HQQ. First, install the dependencies:
pip install hqq
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.models.hf.base import AutoHQQHFModel
from hqq.core.quantize import *
#Params
device = 'cuda:0'
backend = "torchao_int4"
compute_dtype = torch.bfloat16 if backend=="torchao_int4" else torch.float16
model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1"
#Load
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa")
#Quantize
quant_config = BaseQuantizeConfig(nbits=4, group_size=64, axis=1)
AutoHQQHFModel.quantize_model(model, quant_config=quant_config, compute_dtype=compute_dtype, device=device)
#Optimize
from hqq.utils.patching import prepare_for_inference
prepare_for_inference(model, backend=backend, verbose=False)
############################################################
#Generate (streaming)
from hqq.utils.generation_hf import HFGenerator
gen = HFGenerator(model, tokenizer, max_new_tokens=4096, do_sample=True, compile='partial').warmup()
prompt = "If A equals B, and C equals B - A, what would be the value of C?"
out = gen.generate(prompt, print_tokens=True)
############################################################
# #Generate (simple)
# from hqq.utils.generation_hf import patch_model_for_compiled_runtime
# patch_model_for_compiled_runtime(model, tokenizer, warmup=True)
# prompt = "If A equals B, and C equals B - A, what would be the value of C?"
# chat = tokenizer.apply_chat_template([{"role":"user", "content":prompt}], tokenize=True, add_generation_prompt=True, return_tensors="pt")
# outputs = model.generate(chat.to(device), max_new_tokens=8192, do_sample=True)
# print(tokenizer.decode(outputs[0]))
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B