DeepSeek-R1-ReDistill
Collection
Re-distilled DeepSeek R1 models
•
2 items
•
Updated
Using llama.cpp commit 3ad5451 for quantization.
All quants were made using the imatrix option and Bartowski's calibration file.
Quant | Size (MB) | PPL | Size (%) | Accuracy (%) | PPL error rate |
---|---|---|---|---|---|
IQ1_S | 489 | 88.4250 | 14.40 | 23.35 | 1.76 |
IQ1_M | 516 | 53.8278 | 15.19 | 38.35 | 1.03 |
IQ2_XXS | 560 | 45.5693 | 16.49 | 45.31 | 0.93 |
IQ2_XS | 598 | 32.6813 | 17.61 | 63.17 | 0.62 |
IQ2_S | 633 | 28.5477 | 18.64 | 72.32 | 0.54 |
IQ2_M | 669 | 31.8272 | 19.70 | 64.87 | 0.63 |
Q2_K_S | 683 | 28.7707 | 20.11 | 71.76 | 0.54 |
Q2_K | 718 | 27.6342 | 21.14 | 74.71 | 0.51 |
IQ3_XXS | 733 | 23.5511 | 21.58 | 87.66 | 0.44 |
IQ3_XS | 793 | 22.9887 | 23.35 | 89.81 | 0.42 |
Q3_K_S | 821 | 28.0462 | 24.17 | 73.61 | 0.53 |
IQ3_S | 822 | 22.9268 | 24.20 | 90.05 | 0.42 |
IQ3_M | 836 | 22.3167 | 24.62 | 92.51 | 0.41 |
Q3_K_M | 881 | 22.5727 | 25.94 | 91.46 | 0.41 |
Q3_K_L | 935 | 22.3758 | 27.53 | 92.27 | 0.41 |
IQ4_XS | 972 | 21.3273 | 28.62 | 96.80 | 0.38 |
IQ4_NL | 1018 | 21.3234 | 29.98 | 96.82 | 0.38 |
Q4_0 | 1019 | 22.5210 | 30.00 | 91.67 | 0.41 |
Q4_K_S | 1022 | 21.1717 | 30.09 | 97.51 | 0.38 |
Q4_K_M | 1065 | 21.0532 | 31.36 | 98.06 | 0.38 |
Q4_1 | 1109 | 21.1492 | 32.66 | 97.62 | 0.38 |
Q5_K_S | 1201 | 20.7883 | 35.37 | 99.31 | 0.37 |
Q5_0 | 1203 | 20.8643 | 35.42 | 98.95 | 0.37 |
Q5_K_M | 1226 | 20.7488 | 36.10 | 99.50 | 0.37 |
Q5_1 | 1293 | 20.7773 | 38.07 | 99.37 | 0.37 |
Q6_K | 1396 | 20.6994 | 41.11 | 99.74 | 0.37 |
Q8_0 | 1807 | 20.6659 | 53.21 | 99.90 | 0.37 |
F16 | 3396 | 20.6457 | 100 | 100 | 0.37 |
This is a version of the DeepSeek-R1-Distill-Qwen-1.5B model re-distilled for better performance.
Models | DeepSeek-R1-Distill-Qwen-1.5B | DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1 |
---|---|---|
ARC (25-shot) | 40.96 | 41.55 |
HellaSwag (10-shot) | 44 | 45.88 |
MMLU (5-shot) | 39.27 | 41.82 |
TruthfulQA-MC2 | 45.17 | 46.63 |
Winogrande (5-shot) | 55.49 | 57.7 |
GSM8K (5-shot) | 69.9 | 74.3 |
Average | 49.13 | 51.31 |
Models | DeepSeek-R1-Distill-Qwen-1.5B | DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1 |
---|---|---|
GPQA (0-shot) | 26.96 | 26.99 |
MMLU PRO (5-shot) | 16.74 | 19.86 |
MUSR (0-shot) | 35.93 | 36.6 |
BBH (3-shot) | 35.12 | 37.23 |
IfEval (0-shot) | 24.94 | 27.22 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
compute_dtype = torch.bfloat16
device = 'cuda'
model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa", device_map=device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "What is 1.5+102.2?"
chat = tokenizer.apply_chat_template([{"role":"user", "content":prompt}], tokenize=True, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(chat.to(device), max_new_tokens=1024, do_sample=True)
print(tokenizer.decode(outputs[0]))
Output:
<|begin▁of▁sentence|><|User|>What is 1.5+102.2?<|Assistant|><think>
First, I identify the numbers involved in the addition: 1.5 and 102.2.
Next, I add the whole numbers: 1 + 102 equals 103.
Then, I add the decimal parts: 0.5 + 0.2 equals 0.7.
Finally, I combine the results: 103 + 0.7 equals 103.7.
</think>
To solve the addition \(1.5 + 102.2\), follow these steps:
1. **Add the whole numbers:**
\[
1 + 102 = 103
\]
2. **Add the decimal parts:**
\[
0.5 + 0.2 = 0.7
\]
3. **Combine the results:**
\[
103 + 0.7 = 103.7
\]
So, the final answer is \(\boxed{103.7}\).<|end▁of▁sentence|>
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B