|
--- |
|
license: apache-2.0 |
|
tags: |
|
- moe |
|
- merge |
|
- epfl-llm/meditron-7b |
|
- medalpaca/medalpaca-7b |
|
- chaoyi-wu/PMC_LLAMA_7B_10_epoch |
|
- allenai/tulu-2-dpo-7b |
|
model-index: |
|
- name: Medtulu-4x7B |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 28.75 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Technoculture/Medtulu-4x7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 25.74 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Technoculture/Medtulu-4x7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 24.41 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Technoculture/Medtulu-4x7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 47.91 |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Technoculture/Medtulu-4x7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 50.43 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Technoculture/Medtulu-4x7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 0.0 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Technoculture/Medtulu-4x7B |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# Mediquad-tulu-20B |
|
|
|
Mediquad-tulu-20B is a Mixure of Experts (MoE) made with the following models: |
|
* [epfl-llm/meditron-7b](https://huggingface.co./epfl-llm/meditron-7b) |
|
* [medalpaca/medalpaca-7b](https://huggingface.co./medalpaca/medalpaca-7b) |
|
* [chaoyi-wu/PMC_LLAMA_7B_10_epoch](https://huggingface.co./chaoyi-wu/PMC_LLAMA_7B_10_epoch) |
|
* [allenai/tulu-2-dpo-7b](https://huggingface.co./allenai/tulu-2-dpo-7b) |
|
|
|
## Evaluations |
|
|
|
| Benchmark | Mediquad-tulu-20B | meditron-7b | Orca-2-7b | meditron-70b | |
|
| --- | --- | --- | --- | --- | |
|
| MedMCQA | | | | | |
|
| ClosedPubMedQA | | | | | |
|
| PubMedQA | | | | | |
|
| MedQA | | | | | |
|
| MedQA4 | | | | | |
|
| MedicationQA | | | | | |
|
| MMLU Medical | | | | | |
|
| TruthfulQA | | | | | |
|
| GSM8K | | | | | |
|
| ARC | | | | | |
|
| HellaSwag | | | | | |
|
| Winogrande | | | | | |
|
|
|
## 🧩 Configuration |
|
|
|
```yamlbase_model: allenai/tulu-2-dpo-7b |
|
gate_mode: hidden |
|
dtype: bfloat16 |
|
experts: |
|
- source_model: epfl-llm/meditron-7b |
|
positive_prompts: |
|
- "What are the latest guidelines for managing type 2 diabetes?" |
|
- "Best practices for post-operative care in cardiac surgery are" |
|
negative_prompts: |
|
- "What are the environmental impacts of deforestation?" |
|
- "The recent advancements in artificial intelligence have led to developments in" |
|
- source_model: medalpaca/medalpaca-7b |
|
positive_prompts: |
|
- "When discussing diabetes management, the key factors to consider are" |
|
- "The differential diagnosis for a headache with visual aura could include" |
|
negative_prompts: |
|
- "Recommend a good recipe for a vegetarian lasagna." |
|
- "The fundamental concepts in economics include ideas like supply and demand, which explain" |
|
- source_model: chaoyi-wu/PMC_LLAMA_7B_10_epoch |
|
positive_prompts: |
|
- "How would you explain the importance of hypertension management to a patient?" |
|
- "Describe the recovery process after knee replacement surgery in layman's terms." |
|
negative_prompts: |
|
- "Recommend a good recipe for a vegetarian lasagna." |
|
- "The recent advancements in artificial intelligence have led to developments in" |
|
- "The fundamental concepts in economics include ideas like supply and demand, which explain" |
|
- source_model: allenai/tulu-2-dpo-7b |
|
positive_prompts: |
|
- "Here is a funny joke for you -" |
|
- "When considering the ethical implications of artificial intelligence, one must take into account" |
|
- "In strategic planning, a company must analyze its strengths and weaknesses, which involves" |
|
- "Understanding consumer behavior in marketing requires considering factors like" |
|
- "The debate on climate change solutions hinges on arguments that" |
|
negative_prompts: |
|
- "In discussing dietary adjustments for managing hypertension, it's crucial to emphasize" |
|
- "For early detection of melanoma, dermatologists recommend that patients regularly check their skin for" |
|
- "Explaining the importance of vaccination, a healthcare professional should highlight" |
|
|
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Technoculture/Mediquad-tulu-20B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Technoculture__Medtulu-4x7B) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |29.54| |
|
|AI2 Reasoning Challenge (25-Shot)|28.75| |
|
|HellaSwag (10-Shot) |25.74| |
|
|MMLU (5-Shot) |24.41| |
|
|TruthfulQA (0-shot) |47.91| |
|
|Winogrande (5-shot) |50.43| |
|
|GSM8k (5-shot) | 0.00| |
|
|
|
|