|
--- |
|
license: apache-2.0 |
|
tags: |
|
- merge |
|
- mergekit |
|
- BioMistral/BioMistral-7B-DARE |
|
- NousResearch/Nous-Hermes-2-Mistral-7B-DPO |
|
--- |
|
|
|
# BioMistral-Hermes-Slerp |
|
|
|
BioMistral-Hermes-Slerp is a merge of the following models: |
|
* [BioMistral/BioMistral-7B-DARE](https://huggingface.co./BioMistral/BioMistral-7B-DARE) |
|
* [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co./NousResearch/Nous-Hermes-2-Mistral-7B-DPO) |
|
|
|
## Evaluations |
|
|
|
| Benchmark | BioMistral-Hermes-Slerp | Orca-2-7b | llama-2-7b | meditron-7b | meditron-70b | |
|
| --- | --- | --- | --- | --- | --- | |
|
| MedMCQA | | | | | | |
|
| ClosedPubMedQA | | | | | | |
|
| PubMedQA | | | | | | |
|
| MedQA | | | | | | |
|
| MedQA4 | | | | | | |
|
| MedicationQA | | | | | | |
|
| MMLU Medical | | | | | | |
|
| MMLU | | | | | | |
|
| TruthfulQA | | | | | | |
|
| GSM8K | | | | | | |
|
| ARC | | | | | | |
|
| HellaSwag | | | | | | |
|
| Winogrande | | | | | | |
|
|
|
More details on the Open LLM Leaderboard evaluation results can be found here. |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: BioMistral/BioMistral-7B-DARE |
|
layer_range: [0, 32] |
|
- model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 # fallback for rest of tensors |
|
dtype: float16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Technoculture/BioMistral-Hermes-Slerp" |
|
messages = [{"role": "user", "content": "I am feeling sleepy these days"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |