working
This model is a fine-tuned version of openlm-research/open_llama_3b_v2 on the None dataset.
Model description
training_arguments = TrainingArguments( per_device_train_batch_size=8, num_train_epochs=10, learning_rate=3e-5, gradient_accumulation_steps=2, optim="adamw_hf", fp16=True, logging_steps=1, # debug=True, output_dir="/kaggle/Tatvajsh/Lllama_AHS_V_7.0/" # warmup_steps=100, )
trainer = SFTTrainer( model=model, tokenizer=tokenizer, train_dataset=dataset, dataset_text_field="text", peft_config=lora_config, max_seq_length=512, args=training_arguments,
packing=True,#change
)
trainer.train()
EPOCHS=[30-50]
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig( r=16, lora_alpha=64, target_modules=['base_layer','gate_proj', 'v_proj','up_proj','down_proj','q_proj','k_proj','o_proj'], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" )
def generate_prompt(row) -> str: prompt=f""" Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{row['Instruction']}
### Response:
{row['Answer']}
### End
"""
return prompt
WHEN THE TRAINING LOSS IN NOT REDUCING THEN TRY SETTING FOR LESSER VALUE OF LEARNING RATE I.E. 2E-5 TO 3E-5,ETC. More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1
Model tree for Tatvajsh/Lllama_AHS_V_7.0
Base model
openlm-research/open_llama_3b_v2