A new checkpoint trained using Qwen/Qwen2-VL-7B-Instruct with an enhanced training setup (LoRA tuning, batch size of 2048, maximum sub-dataset size of 100k). This model has shown significantly improved performance on MMEB & Flickr30K compared to the previous models using Phi-3.5 and llava-v1.6-mistral as backbone.
This repo contains the code and data for VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks. In this paper, we focus on building a unified multimodal embedding model suitable for a wide range of tasks. Our approach is based on transforming an existing, well-trained Vision-Language Model (VLM) into an embedding model.
Github
Data
Our model is being trained on MMEB-train and evaluated on MMEB-eval with contrastive learning. We only use in-batch negatives for training.
- Train data: https://huggingface.co./datasets/TIGER-Lab/MMEB-train
- Eval data: https://huggingface.co./datasets/TIGER-Lab/MMEB-eval
Performance
This model outperforms the baselines and previous version of VLM2Vec by a large margin.
Model | Classification | VQA | Retrieval | Grounding | IND | OOD | Overall |
---|---|---|---|---|---|---|---|
Phi-3.5-V, Full-model fine-tuned (#crop=4) | 52.8 | 50.3 | 57.8 | 72.3 | 62.8 | 47.4 | 55.9 |
Phi-3.5-V, LoRA | 54.8 | 54.9 | 62.3 | 79.5 | 66.5 | 52.0 | 60.1 |
LLaVA-1.6, LoRA | 54.7 | 50.3 | 56.2 | 64.0 | 61.0 | 47.5 | 55.0 |
LLaVA-1.6, LoRA | 61.2 | 49.9 | 67.4 | 86.1 | 67.5 | 57.1 | 62.9 |
Qwen2-VL-2B, LoRA | 59.0 | 49.4 | 65.4 | 73.4 | 66.0 | 52.6 | 60.1 |
Qwen2-VL-7B, LoRA (this model) | 62.6 | 57.8 | 69.9 | 81.7 | 72.2 | 57.8 | 65.8 |
How to use VLM2Vec
(More details please refer to our Github repo, here is just a simple demo.)
First you can clone our github
git clone https://github.com/TIGER-AI-Lab/VLM2Vec.git
pip -r requirements.txt
from src.model import MMEBModel
from src.arguments import ModelArguments
from src.model_utils import load_processor, QWEN2_VL, vlm_image_tokens
from PIL import Image
import torch
model_args = ModelArguments(
model_name='Qwen/Qwen2-VL-7B-Instruct',
checkpoint_path='TIGER-Lab/VLM2Vec-Qwen2VL-7B',
pooling='last',
normalize=True,
model_backbone='qwen2_vl',
lora=True
)
processor = load_processor(model_args)
model = MMEBModel.load(model_args)
model = model.to('cuda', dtype=torch.bfloat16)
model.eval()
# Image + Text -> Text
inputs = processor(text=f'{vlm_image_tokens[QWEN2_VL]} Represent the given image with the following question: What is in the image',
images=Image.open('figures/example.jpg'),
return_tensors="pt")
inputs = {key: value.to('cuda') for key, value in inputs.items()}
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
inputs['image_grid_thw'] = inputs['image_grid_thw'].unsqueeze(0)
qry_output = model(qry=inputs)["qry_reps"]
string = 'A cat and a dog'
inputs = processor(text=string,
images=None,
return_tensors="pt")
inputs = {key: value.to('cuda') for key, value in inputs.items()}
tgt_output = model(tgt=inputs)["tgt_reps"]
print(string, '=', model.compute_similarity(qry_output, tgt_output))
## A cat and a dog = tensor([[0.3301]], device='cuda:0', dtype=torch.bfloat16)
string = 'A cat and a tiger'
inputs = processor(text=string,
images=None,
return_tensors="pt")
inputs = {key: value.to('cuda') for key, value in inputs.items()}
tgt_output = model(tgt=inputs)["tgt_reps"]
print(string, '=', model.compute_similarity(qry_output, tgt_output))
## A cat and a tiger = tensor([[0.2891]], device='cuda:0', dtype=torch.bfloat16)
Citation
@article{jiang2024vlm2vec,
title={VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks},
author={Jiang, Ziyan and Meng, Rui and Yang, Xinyi and Yavuz, Semih and Zhou, Yingbo and Chen, Wenhu},
journal={arXiv preprint arXiv:2410.05160},
year={2024}
}
- Downloads last month
- 140