SentenceTransformer based on sentence-transformers/multi-qa-MiniLM-L6-cos-v1
This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-MiniLM-L6-cos-v1. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Bone Saw',
'Bone Saw Sklar Inch',
'Mask Component Headgear Opus',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 231,882 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 14.16 tokens
- max: 49 tokens
- min: 3 tokens
- mean: 13.28 tokens
- max: 53 tokens
- Samples:
anchor positive Biopsy Cassette Thermo Scientific Shandon Acetal Blue
Biopsy Cassette Blue Acetal
Tissue Cassette Thermo Scientific Shandon Acetal Fluorescent Green
Tissue Cassette Fluorescent Green Acetal
Tissue Cassette Thermo Scientific Shandon Acetal Fluorescent Pink
Tissue Cassette Fluorescent Pink Acetal
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
num_train_epochs
: 4batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0172 | 500 | 0.1383 |
0.0345 | 1000 | 0.1183 |
0.0517 | 1500 | 0.1054 |
0.0690 | 2000 | 0.0727 |
0.0862 | 2500 | 0.0829 |
0.1035 | 3000 | 0.0559 |
0.1207 | 3500 | 0.1274 |
0.1380 | 4000 | 0.0587 |
0.1552 | 4500 | 0.0704 |
0.1725 | 5000 | 0.0863 |
0.1897 | 5500 | 0.0888 |
0.2070 | 6000 | 0.1099 |
0.2242 | 6500 | 0.1126 |
0.2415 | 7000 | 0.1192 |
0.2587 | 7500 | 0.1082 |
0.2760 | 8000 | 0.1069 |
0.2932 | 8500 | 0.1268 |
0.3105 | 9000 | 0.0913 |
0.3277 | 9500 | 0.1267 |
0.3450 | 10000 | 0.1156 |
0.3622 | 10500 | 0.1522 |
0.3795 | 11000 | 0.088 |
0.3967 | 11500 | 0.0906 |
0.4140 | 12000 | 0.0776 |
0.4312 | 12500 | 0.0956 |
0.4485 | 13000 | 0.1111 |
0.4657 | 13500 | 0.0889 |
0.4830 | 14000 | 0.0765 |
0.5002 | 14500 | 0.1162 |
0.5175 | 15000 | 0.0581 |
0.5347 | 15500 | 0.0831 |
0.5520 | 16000 | 0.0915 |
0.5692 | 16500 | 0.0623 |
0.5865 | 17000 | 0.0702 |
0.6037 | 17500 | 0.0447 |
0.6210 | 18000 | 0.0715 |
0.6382 | 18500 | 0.0749 |
0.6555 | 19000 | 0.3381 |
0.6727 | 19500 | 0.0749 |
0.6900 | 20000 | 0.0614 |
0.7072 | 20500 | 0.1093 |
0.7245 | 21000 | 0.0847 |
0.7417 | 21500 | 0.063 |
0.7590 | 22000 | 0.0657 |
0.7762 | 22500 | 0.061 |
0.7935 | 23000 | 0.0837 |
0.8107 | 23500 | 0.0989 |
0.8280 | 24000 | 0.0523 |
0.8452 | 24500 | 0.0817 |
0.8625 | 25000 | 0.0533 |
0.8797 | 25500 | 0.0584 |
0.8970 | 26000 | 0.0353 |
0.9142 | 26500 | 0.0146 |
0.9315 | 27000 | 0.0831 |
0.9487 | 27500 | 0.049 |
0.9660 | 28000 | 0.0741 |
0.9832 | 28500 | 0.0469 |
1.0004 | 29000 | 0.063 |
1.0177 | 29500 | 0.0846 |
1.0349 | 30000 | 0.058 |
1.0522 | 30500 | 0.0701 |
1.0694 | 31000 | 0.0451 |
1.0867 | 31500 | 0.0506 |
1.1039 | 32000 | 0.0311 |
1.1212 | 32500 | 0.0761 |
1.1384 | 33000 | 0.0356 |
1.1557 | 33500 | 0.0387 |
1.1729 | 34000 | 0.0532 |
1.1902 | 34500 | 0.0568 |
1.2074 | 35000 | 0.0654 |
1.2247 | 35500 | 0.0726 |
1.2419 | 36000 | 0.0839 |
1.2592 | 36500 | 0.0698 |
1.2764 | 37000 | 0.0824 |
1.2937 | 37500 | 0.0832 |
1.3109 | 38000 | 0.0622 |
1.3282 | 38500 | 0.0849 |
1.3454 | 39000 | 0.0724 |
1.3627 | 39500 | 0.1039 |
1.3799 | 40000 | 0.0581 |
1.3972 | 40500 | 0.0561 |
1.4144 | 41000 | 0.0666 |
1.4317 | 41500 | 0.0687 |
1.4489 | 42000 | 0.0793 |
1.4662 | 42500 | 0.0638 |
1.4834 | 43000 | 0.0544 |
1.5007 | 43500 | 0.0686 |
1.5179 | 44000 | 0.0408 |
1.5352 | 44500 | 0.0602 |
1.5524 | 45000 | 0.0663 |
1.5697 | 45500 | 0.0488 |
1.5869 | 46000 | 0.047 |
1.6042 | 46500 | 0.0326 |
1.6214 | 47000 | 0.0644 |
1.6387 | 47500 | 0.0582 |
1.6559 | 48000 | 0.2124 |
1.6732 | 48500 | 0.0482 |
1.6904 | 49000 | 0.0389 |
1.7077 | 49500 | 0.0847 |
1.7249 | 50000 | 0.0636 |
1.7422 | 50500 | 0.044 |
1.7594 | 51000 | 0.0403 |
1.7767 | 51500 | 0.0397 |
1.7939 | 52000 | 0.0545 |
1.8112 | 52500 | 0.0681 |
1.8284 | 53000 | 0.0422 |
1.8456 | 53500 | 0.0522 |
1.8629 | 54000 | 0.0394 |
1.8801 | 54500 | 0.041 |
1.8974 | 55000 | 0.0232 |
1.9146 | 55500 | 0.0176 |
1.9319 | 56000 | 0.0471 |
1.9491 | 56500 | 0.0337 |
1.9664 | 57000 | 0.0439 |
1.9836 | 57500 | 0.0321 |
2.0008 | 58000 | 0.0433 |
2.0181 | 58500 | 0.0672 |
2.0353 | 59000 | 0.0441 |
2.0526 | 59500 | 0.0459 |
2.0698 | 60000 | 0.0342 |
2.0871 | 60500 | 0.0369 |
2.1043 | 61000 | 0.0205 |
2.1216 | 61500 | 0.0605 |
2.1388 | 62000 | 0.0252 |
2.1561 | 62500 | 0.0276 |
2.1733 | 63000 | 0.0406 |
2.1906 | 63500 | 0.0451 |
2.2078 | 64000 | 0.0447 |
2.2251 | 64500 | 0.0523 |
2.2423 | 65000 | 0.062 |
2.2596 | 65500 | 0.0514 |
2.2768 | 66000 | 0.0677 |
2.2941 | 66500 | 0.0655 |
2.3113 | 67000 | 0.0494 |
2.3286 | 67500 | 0.0728 |
2.3458 | 68000 | 0.0585 |
2.3631 | 68500 | 0.0866 |
2.3803 | 69000 | 0.0409 |
2.3976 | 69500 | 0.0429 |
2.4148 | 70000 | 0.0534 |
2.4321 | 70500 | 0.0542 |
2.4493 | 71000 | 0.0563 |
2.4666 | 71500 | 0.0488 |
2.4838 | 72000 | 0.0401 |
2.5011 | 72500 | 0.0575 |
2.5183 | 73000 | 0.0344 |
2.5356 | 73500 | 0.052 |
2.5528 | 74000 | 0.0569 |
2.5701 | 74500 | 0.0408 |
2.5873 | 75000 | 0.0384 |
2.6046 | 75500 | 0.0281 |
2.6218 | 76000 | 0.0447 |
2.6391 | 76500 | 0.0495 |
2.6563 | 77000 | 0.1492 |
2.6736 | 77500 | 0.0314 |
2.6908 | 78000 | 0.0314 |
2.7081 | 78500 | 0.0691 |
2.7253 | 79000 | 0.0496 |
2.7426 | 79500 | 0.0309 |
2.7598 | 80000 | 0.0323 |
2.7771 | 80500 | 0.0357 |
2.7943 | 81000 | 0.0387 |
2.8116 | 81500 | 0.0544 |
2.8288 | 82000 | 0.0297 |
2.8461 | 82500 | 0.0384 |
2.8633 | 83000 | 0.0332 |
2.8806 | 83500 | 0.031 |
2.8978 | 84000 | 0.017 |
2.9151 | 84500 | 0.0223 |
2.9323 | 85000 | 0.0271 |
2.9496 | 85500 | 0.0298 |
2.9668 | 86000 | 0.0297 |
2.9841 | 86500 | 0.026 |
3.0012 | 87000 | 0.0266 |
3.0185 | 87500 | 0.0531 |
3.0357 | 88000 | 0.0342 |
3.0530 | 88500 | 0.039 |
3.0702 | 89000 | 0.0263 |
3.0875 | 89500 | 0.0288 |
3.1047 | 90000 | 0.0158 |
3.1220 | 90500 | 0.0484 |
3.1392 | 91000 | 0.0179 |
3.1565 | 91500 | 0.0215 |
3.1737 | 92000 | 0.0316 |
3.1910 | 92500 | 0.0395 |
3.2082 | 93000 | 0.037 |
3.2255 | 93500 | 0.0389 |
3.2427 | 94000 | 0.0512 |
3.2600 | 94500 | 0.0451 |
3.2772 | 95000 | 0.0583 |
3.2945 | 95500 | 0.0502 |
3.3117 | 96000 | 0.0407 |
3.3290 | 96500 | 0.0628 |
3.3462 | 97000 | 0.0434 |
3.3635 | 97500 | 0.0741 |
3.3807 | 98000 | 0.0318 |
3.3980 | 98500 | 0.0387 |
3.4152 | 99000 | 0.041 |
3.4325 | 99500 | 0.0429 |
3.4497 | 100000 | 0.0514 |
3.4670 | 100500 | 0.0377 |
3.4842 | 101000 | 0.0355 |
3.5015 | 101500 | 0.043 |
3.5187 | 102000 | 0.029 |
3.5360 | 102500 | 0.047 |
3.5532 | 103000 | 0.0554 |
3.5705 | 103500 | 0.0385 |
3.5877 | 104000 | 0.0294 |
3.6050 | 104500 | 0.023 |
3.6222 | 105000 | 0.0381 |
3.6395 | 105500 | 0.0422 |
3.6567 | 106000 | 0.1091 |
3.6740 | 106500 | 0.0289 |
3.6912 | 107000 | 0.0276 |
3.7085 | 107500 | 0.0606 |
3.7257 | 108000 | 0.0402 |
3.7430 | 108500 | 0.0256 |
3.7602 | 109000 | 0.0279 |
3.7775 | 109500 | 0.0317 |
3.7947 | 110000 | 0.0303 |
3.8120 | 110500 | 0.0492 |
3.8292 | 111000 | 0.0239 |
3.8465 | 111500 | 0.0297 |
3.8637 | 112000 | 0.0293 |
3.8810 | 112500 | 0.0278 |
3.8982 | 113000 | 0.0134 |
3.9155 | 113500 | 0.0192 |
3.9327 | 114000 | 0.0235 |
3.9500 | 114500 | 0.0268 |
3.9672 | 115000 | 0.022 |
3.9845 | 115500 | 0.0235 |
Framework Versions
- Python: 3.9.19
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.