Exllama v2 Quantizations of Weyaxi/Einstein-v5-v0.2-7B
Using turboderp's ExLlamaV2 v0.0.16 for quantization.
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
Original model: Weyaxi/Einstein-v5-v0.2-7B
Model Size: 7b
Branch | Bits | lm_head bits | Dataset | Size | Description |
---|---|---|---|---|---|
8_0 | 8.0 | 8.0 | Default | 9.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
6_5 | 6.5 | 8.0 | Default | 8.6 GB | Very similar to 8.0, good tradeoff of size vs performance, recommended. |
5_0 | 5.0 | 6.0 | Default | 7.4 GB | Slightly lower perplexity vs 6.5. |
4_0 | 4.0 | 6.0 | Default | 6.5 GB | Just under GPTQ equivalent bits per weight. |
All VRAM requirements estimated from 16k context. For 32k context add ~2 GB.
Download instructions
With git:
git clone --single-branch --branch 4_0 https://huggingface.co./suparious/Einstein-v5-v0.2-7B-exl2
With huggingface hub (credit to TheBloke and bartowski for instructions):
pip3 install huggingface-hub
To download the main
(only useful if you only care about measurement.json) branch to a folder called Einstein-v5-v0.2-7B-exl2
:
mkdir Einstein-v5-v0.2-7B-exl2
huggingface-cli download suparious/Einstein-v5-v0.2-7B-exl2 --local-dir Einstein-v5-v0.2-7B-exl2 --local-dir-use-symlinks False
To download from a different branch, add the --revision
parameter:
mkdir Einstein-v5-v0.2-7B-exl2-6_5
huggingface-cli download suparious/Einstein-v5-v0.2-7B-exl2 --revision 6_5 --local-dir Einstein-v5-v0.2-7B-exl2-6_5 --local-dir-use-symlinks False
Model tree for Suparious/Einstein-v5-v0.2-7B-exl2
Base model
mistral-community/Mistral-7B-v0.2