Edit model card

RewardModelSmallerQuestionWithTwoLabelsLengthJustified

This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5248
  • F1: 0.7539
  • Roc Auc: 0.7508
  • Accuracy: 0.7380

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.7105 1.0 145 0.6814 0.5260 0.5192 0.5048
0.6899 2.0 290 0.6530 0.6090 0.6102 0.6038
0.6703 3.0 435 0.6318 0.6387 0.6565 0.6070
0.6432 4.0 580 0.6098 0.6961 0.7029 0.6805
0.6273 5.0 725 0.5909 0.7118 0.7141 0.7061
0.64 6.0 870 0.5837 0.7038 0.7029 0.6965
0.6178 7.0 1015 0.5829 0.7005 0.6981 0.6869
0.6342 8.0 1160 0.5855 0.6785 0.6805 0.6741
0.583 9.0 1305 0.5549 0.7310 0.7284 0.7188
0.5801 10.0 1450 0.5805 0.6710 0.6773 0.6581
0.6279 11.0 1595 0.6581 0.6003 0.6022 0.5974
0.6112 12.0 1740 0.5382 0.7372 0.7380 0.7348
0.5967 13.0 1885 0.6305 0.6443 0.6438 0.6422
0.5927 14.0 2030 0.6144 0.6613 0.6645 0.6550
0.5968 15.0 2175 0.5825 0.6901 0.6901 0.6901
0.6122 16.0 2320 0.5858 0.6815 0.6805 0.6773
0.5941 17.0 2465 0.5719 0.6979 0.7013 0.6901
0.5977 18.0 2610 0.6043 0.6699 0.6709 0.6677
0.59 19.0 2755 0.5465 0.7203 0.7220 0.7157
0.5871 20.0 2900 0.6474 0.6262 0.6262 0.6262
0.5932 21.0 3045 0.5701 0.6945 0.6965 0.6901
0.5966 22.0 3190 0.5281 0.7387 0.7412 0.7316
0.6006 23.0 3335 0.5713 0.6945 0.6965 0.6869
0.5696 24.0 3480 0.6498 0.6242 0.6230 0.6198
0.5921 25.0 3625 0.6453 0.6359 0.6342 0.6294
0.5761 26.0 3770 0.5226 0.7528 0.7524 0.7508
0.5504 27.0 3915 0.5793 0.6751 0.6725 0.6645
0.5891 28.0 4060 0.5248 0.7539 0.7508 0.7380
0.5757 29.0 4205 0.5983 0.6699 0.6693 0.6677
0.5631 30.0 4350 0.6187 0.6454 0.6454 0.6454

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
8
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SudiptoPramanik/RewardModelSmallerQuestionWithTwoLabelsLengthJustified

Finetuned
(273)
this model