YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co./docs/hub/model-cards#model-card-metadata)

Instruction Tuning LLAMA3

This repo uses the torchtune for instruction tuning the llama3 pretrained model on mathematical tasks using LORA.

Wandb report link

https://wandb.ai/som/torchtune_llama3?nw=nwusersom

Instruction_tuned Model

https://huggingface.co./Someshfengde/llama-3-instruction-tuned-AIMO

Original metallama model

https://huggingface.co./meta-llama/Meta-Llama-3-8B

For running this project

> pip install poetry 
> poetry install 

Further commands over shell terminal

To download the model

tune download meta-llama/Meta-Llama-3-8B \
--output-dir llama3-8b-hf \
--hf-token <HF_TOKEN> 

To start instruction tuning with lora and torchtune

tune run lora_finetune_single_device --config ./lora_finetune_single_device.yaml

To quantize the model

tune run quantize --config ./quantization_config.yaml

To generate inference from model.

tune run generate --config ./generation_config.yaml \
prompt="what is 2 + 2."

Dataset used

https://huggingface.co./datasets/Someshfengde/AIMO_dataset

Evaluations

To run evaluations

tune run eleuther_eval --config ./eval_config.yaml

TruthfulQA: 0.42

alt text

MMLU Abstract Algebra: 0.35

alt text

MATHQA: 0.33

alt text

Agieval_sat_math: 0.31

alt text

Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.