Model Trained Using AutoTrain

  • Problem type: Tabular regression

Validation Metrics

  • r2: 0.7770511763473569
  • mse: 7850730654540.005
  • mae: 1734575.7588461537
  • rmse: 2801915.5330844657
  • rmsle: 0.23713967369435024
  • loss: 2801915.5330844657

Best Params

  • learning_rate: 0.02229837095040035
  • reg_lambda: 2.510764141176911
  • reg_alpha: 0.001531565861357925
  • subsample: 0.8214234508684097
  • colsample_bytree: 0.3555990037002663
  • max_depth: 5
  • early_stopping_rounds: 355
  • n_estimators: 20000
  • eval_metric: rmse

Usage

import json
import joblib
import pandas as pd

model = joblib.load('model.joblib')
config = json.load(open('config.json'))

features = config['features']

# data = pd.read_csv("data.csv")
data = data[features]

predictions = model.predict(data)  # or model.predict_proba(data)

# predictions can be converted to original labels using label_encoders.pkl
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train SenecaCloudG4/Project2